4,104 research outputs found
Testing for Network and Spatial Autocorrelation
Testing for dependence has been a well-established component of spatial
statistical analyses for decades. In particular, several popular test
statistics have desirable properties for testing for the presence of spatial
autocorrelation in continuous variables. In this paper we propose two
contributions to the literature on tests for autocorrelation. First, we propose
a new test for autocorrelation in categorical variables. While some methods
currently exist for assessing spatial autocorrelation in categorical variables,
the most popular method is unwieldy, somewhat ad hoc, and fails to provide
grounds for a single omnibus test. Second, we discuss the importance of testing
for autocorrelation in data sampled from the nodes of a network, motivated by
social network applications. We demonstrate that our proposed statistic for
categorical variables can both be used in the spatial and network setting
f(R) Gravities, Killing Spinor Equations, "BPS" Domain Walls and Cosmology
We derive the condition on f(R) gravities that admit Killing spinor equations
and construct explicit such examples. The Killing spinor equations can be used
to reduce the fourth-order differential equations of motion to the first order
for both the domain wall and FLRW cosmological solutions. We obtain exact "BPS"
domain walls that describe the smooth Randall-Sundrum II, AdS wormholes and the
RG flow from IR to UV. We also obtain exact smooth cosmological solutions that
describe the evolution from an inflationary starting point with a larger
cosmological constant to an ever-expanding universe with a smaller cosmological
constant. In addition, We find exact smooth solutions of pre-big bang models,
bouncing or crunching universes. An important feature is that the scalar
curvature R of all these metrics is varying rather than a constant. Another
intriguing feature is that there are two different f(R) gravities that give
rise to the same "BPS" solution. We also study linearized f(R) gravities in
(A)dS vacua.Comment: 37 pages, discussion on gravity trapping in RSII modified, typos
corrected, further comments and references added; version to appear in JHE
Holographic Charged Fluid with Anomalous Current at Finite Cutoff Surface in Einstein-Maxwell Gravity
The holographic charged fluid with anomalous current in Einstein-Maxwell
gravity has been generalized from the infinite boundary to the finite cutoff
surface by using the gravity/fluid correspondence. After perturbing the boosted
Reissner-Nordstrom (RN)-AdS black brane solution of the Einstein-Maxwell
gravity with the Chern-Simons term, we obtain the first order perturbative
gravitational and Maxwell solutions, and calculate the stress tensor and
charged current of the dual fluid at finite cutoff surfaces which contains
undetermined parameters after demanding regularity condition at the future
horizon. We adopt the Dirichlet boundary condition and impose the Landau frame
to fix these parameters, finally obtain the dependence of transport
coefficients in the dual stress tensor and charged current on the arbitrary
radical cutoff . We find that the dual fluid is not conformal, but it has
vanishing bulk viscosity, and the shear viscosity to entropy density ratio is
universally . Other transport coefficients of the dual current turns
out to be cutoff-dependent. In particular, the chiral vortical conductivity
expressed in terms of thermodynamic quantities takes the same form as that of
the dual fluid at the asymptotic AdS boundary, and the chiral magnetic
conductivity receives a cutoff-dependent correction which vanishes at the
infinite boundary.Comment: 19 pages, v2: references added, v3: typos corrected, v5: typos
corrected, version accepted for publication in JHE
The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.
BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury
Superconductivity in HfTe5 across weak to strong topological insulator transition induced via pressures
Recently, theoretical studies show that layered HfTe5 is at the boundary of weak & strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic & crystal structures for HfTe5 with a culmination of pressure induced superconductivity. Our experiments indicated that the temperature for anomaly resistance peak (Tp) due to Lifshitz transition decreases first before climbs up to a maximum with pressure while the Tp minimum corresponds to the transition from a weak TI to strong TI. The HfTe5 crystal becomes superconductive above ~5.5 GPa where the Tp reaches maximum. The highest superconducting transition temperature (Tc) around 5 K was achieved at 20 GPa. Crystal structure studies indicate that HfTe5 transforms from a Cmcm phase across a monoclinic C2/m phase then to a P-1 phase with increasing pressure. Based on transport, structure studies a comprehensive phase diagram of HfTe5 is constructed as function of pressure. The work provides valuable experimental insights into the evolution on how to proceed from a weak TI precursor across a strong TI to superconductors
Feeding spectra and activity of the freshwater crab Trichodactylus kensleyi (Decapoda: Brachyura: Trichodactylidae) at La Plata basin
Background: In inland water systems, it is important to characterize the trophic links in order to identify the ‘trophic species’ and, from the studies of functional diversity, understand the dynamics of matter and energy in these environments. The aim of this study is to analyze the natural diet of Trichodactylus kensleyi of subtropical rainforest streams and corroborate the temporal variation in the trophic activity during day hours.
Results: A total of 15 major taxonomic groups were recognized in gut contents. The index of relative importance identified the following main prey items in decreasing order of importance: vegetal remains, oligochaetes, chironomid larvae, and algae. A significant difference was found in the amount of full stomachs during day hours showing a less trophic activity at midday and afternoon. The index of relative importance values evidenced the consumption of different prey according to day moments. Results of the gut content indicate that T. kensleyi is an omnivorous crab like other trichodactylid species. Opportunistic behavior is revealed by the ingestion of organisms abundant in streams such as oligochaetes and chironomid larvae. The consumption of allochthonous plant debris shows the importance of this crab as shredder in subtropical streams. However, the effective assimilation of plant matter is yet unknown in trichodactylid crabs.
Conclusions: This research provides knowledge that complements previous studies about trophic relationships of trichodactylid crabs and supported the importance of T. kensleyi in the transference of energy and matter from benthic community and riparian sources to superior trophic levels using both macro- and microfauna.Fil: Williner, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; ArgentinaFil: de Azevedo Carvalho, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Collins, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentin
How large should whales be?
The evolution and distribution of species body sizes for terrestrial mammals
is well-explained by a macroevolutionary tradeoff between short-term selective
advantages and long-term extinction risks from increased species body size,
unfolding above the 2g minimum size induced by thermoregulation in air. Here,
we consider whether this same tradeoff, formalized as a constrained
convection-reaction-diffusion system, can also explain the sizes of fully
aquatic mammals, which have not previously been considered. By replacing the
terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial
mammal tradeoff model accurately predicts, with no tunable parameters, the
observed body masses of all extant cetacean species, including the 175,000,000g
Blue Whale. This strong agreement between theory and data suggests that a
universal macroevolutionary tradeoff governs body size evolution for all
mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus
be attributed mainly to the increased convective heat loss is water, which
shifts the species size distribution upward and pushes its right tail into
ranges inaccessible to terrestrial mammals. Under this macroevolutionary
tradeoff, the largest expected species occurs where the rate at which
smaller-bodied species move up into large-bodied niches approximately equals
the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table
Autism as a disorder of neural information processing: directions for research and targets for therapy
The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
- …
