41,244 research outputs found

    Analysis as a source of geometry: a non-geometric representation of the Dirac equation

    Get PDF
    Consider a formally self-adjoint first order linear differential operator acting on pairs (2-columns) of complex-valued scalar fields over a 4-manifold without boundary. We examine the geometric content of such an operator and show that it implicitly contains a Lorentzian metric, Pauli matrices, connection coefficients for spinor fields and an electromagnetic covector potential. This observation allows us to give a simple representation of the massive Dirac equation as a system of four scalar equations involving an arbitrary two-by-two matrix operator as above and its adjugate. The point of the paper is that in order to write down the Dirac equation in the physically meaningful 4-dimensional hyperbolic setting one does not need any geometric constructs. All the geometry required is contained in a single analytic object - an abstract formally self-adjoint first order linear differential operator acting on pairs of complex-valued scalar fields.Comment: Edited in accordance with referees' recommendation

    Meso-scale modelling of 3D woven composite T-joints with weave variations

    Get PDF
    A meso-scale modelling framework is proposed to simulate the 3D woven fibre architectures and the mechanical performance of the composite T-joints, subjected to quasi-static tensile pull-off loading. The proposed method starts with building the realistic reinforcement geometries of the 3D woven T-joints at the mesoscale, of which the modelling strategy is applicable for other types of geometries with weave variations at the T-joint junction. Damage modelling incorporates both interface and constituent material damage, in conjunction with a continuum damage mechanics approach to account for the progressive failure behaviour. With a voxel based cohesive zone model, the proposed method is able to model mode I delamination based on the voxel mesh technique, which has advantages in meshing. Predicted results are in good agreement with experimental data beyond initial failure, in terms of load-displacement responses, failure events, damage initiation and propagation. The significant effect of fibre architecture variations on mechanical behaviour is successfully predicted through this modelling method without any further correlation of input parameters in damage model. This predictive method will facilitate the design and optimisation of 3D woven T-joint preforms

    Throughput and Robustness Guaranteed Beam Tracking for mmWave Wireless Networks

    Full text link
    With the increasing demand of ultra-high-speed wireless communications and the existing low frequency band (e.g., sub-6GHz) becomes more and more crowded, millimeter-wave (mmWave) with large spectra available is considered as the most promising frequency band for future wireless communications. Since the mmWave suffers a serious path-loss, beamforming techniques shall be adopted to concentrate the transmit power and receive region on a narrow beam for achieving long distance communications. However, the mobility of users will bring frequent beam handoff, which will decrease the quality of experience (QoE). Therefore, efficient beam tracking mechanism should be carefully researched. However, the existing beam tracking mechanisms concentrate on system throughput maximization without considering beam handoff and link robustness. This paper proposes a throughput and robustness guaranteed beam tracking mechanism for mobile mmWave communication systems which takes account of both system throughput and handoff probability. Simulation results show that the proposed throughput and robustness guaranteed beam tracking mechanism can provide better performance than the other beam tracking mechanisms.Comment: Accepted by IEEE/CIC ICCC 201

    Resummation prediction on gauge boson pair production with a jet veto

    Full text link
    We investigate the resummation effects with a jet veto, for WZ and ZZ productions at the LHC in soft-collinear effective theory. We present the invariant mass distributions and the total cross section with different jet veto and jet radius for these process at Next-to-Next-to-Leading-Logarithmic level. Our results show that the jet-veto resummation can increase the jet-veto cross section and decrease the scale uncertainties, especially in the large center-of-mass energy. We find that for pt_veto>30 GeV and R=0.4, the resummation results can increase POWHEG+PYTHIA predictions by about 19% for WZ production and 18% for ZZ production, respectively. Our results agree with the CMS data for WZ productions within 2σ\sigma C.L. at 8 TeV, which can explain the 2σ\sigma discrepancy between the CMS experimental results and theoretical predictions based on NLO calculation with parton showers.Comment: 15 pages, 11 figure
    corecore