12 research outputs found

    Critical Essay: Organizational cognitive neuroscience drives theoretical progress, or: The curious case of the straw man murder:organizational cognitive neuroscience drives theoretical progress, or: The curious case of the straw man murder

    Get PDF
    In this critical essay, we respond to Lindebaum’s (2016) argument that neuroscientific methodologies and data have been accepted prematurely in proposing novel management theory. We acknowledge that building new management theories requires firm foundations. We also find his distinction between demand and supply side forces helpful as an analytical framework identifying the momentum for the contemporary production of management theory. Nevertheless, some of the arguments Lindebaum (2016) puts forward, on closer inspection, can be contested, especially those related to the supply side of organizational cognitive neuroscience (OCN) research: fMRI data, motherhood statements and ethical concerns. We put forward a more positive case for OCN methodologies and data, as well as clarifying exactly what OCN really means, and its consequences for the development of strong management theory

    Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric fMRI study

    No full text
    Responses to monetary reward in humans have been assessed in a number of recent functional imaging studies, and it is clear that the neuronal substrates of financial reinforcement overlap extensively with regions responding to primary reinforcers, such as food. Money has the practical advantage of being an objectively quantifiable reinforcer. In this study, we exploit this advantage using a parametric functional magnetic resonance imaging design to look at the patterns of responding to systematically varying reward values. Twelve healthy volunteers were scanned during performance of a rewarded target detection task, in which the reward value varied between task blocks. We observed three distinct patterns of responding in different regions. Amygdala, striatum, and dopaminergic midbrain responded to the presence of rewards, regardless of value. In contrast, premotor cortex showed a linear increase in response with increasing reward value. Finally, medial and lateral foci of orbitofrontal cortex responded nonlinearly, such that response was enhanced for the lowest and highest reward values relative to the midrange. These results suggest functional distinction in response patterns within a distributed reward system
    corecore