436 research outputs found

    Density of states determination from steady-state photocarrier grating measurements

    Get PDF
    We present a method to obtain the density of states (DOS) of photoconductive insulators based on steady-state photocarrier grating (SSPG) measurements. A simple expression—relating the DOS at the electron quasi-Fermi level to measurable quantities—is deduced by performing suitable approximations from the analytical solution of the generalized equations that describe the SSPG experiment. The validity of the approximations and the applicability of the final expression are verified from numerical simulations of the process. The usefulness of the method is demonstrated by performing measurements on a standard hydrogenated amorphous silicon sample.Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Longeaud, C.. Université Paris VI et XI; Franci

    Defects in amorphous phase-change materials

    Get PDF
    Understanding the physical origin of threshold switching and resistance drift phenomena is necessary for making a breakthrough in the performance of low-cost nanoscale technologies related to nonvolatile phase-change memories. Even though both phenomena of threshold switching and resistance drift are often attributed to localized states in the band gap, the distribution of defect states in amorphous phase-change materials (PCMs) has not received so far, the level of attention that it merits. This work presents an experimental study of defects in amorphous PCMs using modulated photocurrent experiments and photothermal deflection spectroscopy. This study of electrically switching alloys involving germanium (Ge), antimony (Sb) and tellurium (Te) such as amorphous germanium telluride (a-GeTe), a-Ge15Te85 and a-Ge2Sb2Te5 demonstrates that those compositions showing a high electrical threshold field also show a high defect density. This result supports a mechanism of recombination and field-induced generation driving threshold switching in amorphous chalcogenides. Furthermore, this work provides strong experimental evidence for complex trap kinetics during resistance drift. This work reports annihilation of deep states and an increase in shallow defect density accompanied by band gap widening in aged a-GeTe thin film

    Photoinduced Schottky Barrier in Photorefractive Materials

    Get PDF
    We report on the first experimental evidence of a Schottky barrier effect produced by the action of light in an otherwise purely Ohmic contact between a nominally undoped photorefractive titanosillenite Bi(12)TiO(20) crystal and a transparent conductive SnO(2) electrode. The photorefractive crystal is sandwiched between two transparent electrodes and a Schottky barrier is built up in the illuminated crystal-electrode interface under the action of light with photonic energy large enough to excite charge carriers from the Fermi level into the conduction band. The contact remains purely Ohmic under illumination with photonic energy below that of the Fermi gap and the photoinduced barrier almost disappears if the photonic energy is large enough to produce electron-hole pairs.1041

    Highly conductive p-type nc-SiO<sub>X</sub>:H thin films deposited at 130°C via efficient incorporation of plasma synthesized silicon nanocrystals and their application in SHJ solar cells

    Get PDF
    We present highly conductive and transparent p-type hydrogenated nanocrystalline silicon oxide (p-type nc-SiOX:H) layers produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) at 130°C and 150°C. We report on the crystalline volume fraction (XC), spectral broadening parameter C, and dark conductivity (σ) as functions of the growth temperature and RF power, and how these properties evolve with post-deposition annealing at 250°C and 300°C. Interestingly, we observe that the best layers in terms of crystalline volume fraction and conductivity are obtained at the lowest temperature and RF power, which we attribute to the soft landing of silicon nanocrystals synthesized in the plasma. The p-type nc-SiOX:H layers with the best properties on glass substrates are implemented as carrier-selective contacts in silicon heterojunction (SHJ) solar cells with the structure: (n) a-Si:H / (i) a-Si:H / n-type c-Si / (i) a-Si:H / (i) a-SiOX:H / (p) nc-SiOX:H / (p) nc-Si:H where all films are deposited by PECVD. The cells were completed with sputtered ITO on the front and rear sides plus Ag on the rear side, and Ag grid on the front, with the best devices showing conversion efficiencies of 21.8%, which, contrary to a-Si:H contact layers, are preserved or even slightly improved upon annealing at 240°C.</p

    Ultrahigh drive current and large selectivity in GeS selector

    Get PDF
    Funder: National Key Research and Development Program of China (2017YFB0206101); Strategic Priority Research Program of the Chinese Academy of Sciences (XDB44010200); Hundred Talents Program (Chinese Academy of Sciences); Shanghai Pujiang Talent Program (18PJ1411100)Abstract: Selector devices are indispensable components of large-scale nonvolatile memory and neuromorphic array systems. Besides the conventional silicon transistor, two-terminal ovonic threshold switching device with much higher scalability is currently the most industrially favored selector technology. However, current ovonic threshold switching devices rely heavily on intricate control of material stoichiometry and generally suffer from toxic and complex dopants. Here, we report on a selector with a large drive current density of 34 MA cm−2 and a ~106 high nonlinearity, realized in an environment-friendly and earth-abundant sulfide binary semiconductor, GeS. Both experiments and first-principles calculations reveal Ge pyramid-dominated network and high density of near-valence band trap states in amorphous GeS. The high-drive current capacity is associated with the strong Ge-S covalency and the high nonlinearity could arise from the synergy of the mid-gap traps assisted electronic transition and local Ge-Ge chain growth as well as locally enhanced bond alignment under high electric field

    Epitaxy and characterization of InP/InGaAs tandem solar cells grown by MOVPE on InP and Si substrates

    Get PDF
    The integration of III-V multi-junction solar cells on Si substrates is currently one of the most promising possibilities to combine high photovoltaic performance with a reduction of the manufacturing costs. In this work, we propose a prospective study for the realization of an InP/InGaAs tandem solar cell lattice-matched to InP on a commercially available Si template by direct MOVPE growth. The InP top cell and the InGaAs bottom cell were firstly separately grown and optimized using InP substrates, which exhibited conversion efficiencies of 13.5% and 11.4%, respectively. The two devices were then combined in a tandem device by introducing an intermediate InP/AlInAs lattice-matched tunnel junction, showing an efficiency of 18.4%. As an intermediate step towards the realization of the tandem device on Si, the InP and InGaAs single junction solar cells were grown on top of a commercial InP/GaP/Si template. This transitional stage enabled to isolate and evaluate the effects of the growth of III-V on Si on the photovoltaic performance through the comparison with the aforementioned devices on InP. Each cell was electrically characterized by external quantum efficiency and dark and illuminated current-voltage under solar simulator. The material quality was also analyzed by means of X-ray diffraction, Atomic-Force Microscopy, Transmission Electron and Scanning Electron Microscopy. The III-V on Si devices showed efficiencies of 3.6% and 2.0% for the InP and InGaAs solar cells, respectively
    corecore