1,330 research outputs found
Ks-band (2.14 micron) imaging of southern massive star formation regions traced by methanol masers
We present deep, wide-field, Ks-band (2.14 micron) images towards 87 southern
massive star formation regions traced by methanol maser emission. Using
point-spread function fitting, we generate 2.14 micron point source catalogues
towards each of the regions. For the regions between 10 degrees and 350 degrees
galactic longitude and galactic latitude +/- 1 degree, we match the 2.14 micron
sources with the GLIMPSE point source catalogue to generate a combined 2.14 to
8.0 micron point source catalogue. We provide this data for the astronomical
community to utilise in studies of the stellar content of embedded clusters.Comment: Accepted PASA. Full version including figures available from
http://www.cfa.harvard.edu/~slongmor/snl_iris2_withfigs.pd
Physical characterisation of southern massive star-forming regions using Parkes NH observations
We have undertaken a Parkes ammonia spectral line study, in the lowest two
inversion transitions, of southern massive star formation regions, including
young massive candidate protostars, with the aim of characterising the earliest
stages of massive star formation. 138 sources from the submillimetre continuum
emission studies of Hill et al., were found to have robust (1,1) detections,
including two sources with two velocity components, and 102 in the (2,2)
transition.
We determine the ammonia line properties of the sources: linewidth, flux
density, kinetic temperature, NH column density and opacity, and revisit
our SED modelling procedure to derive the mass for 52 of the sources. By
combining the continuum emission information with ammonia observations we
substantially constrain the physical properties of the high-mass clumps. There
is clear complementarity between ammonia and continuum observations for
derivations of physical parameters.
The MM-only class, identified in the continuum studies of Hill et al.,
display smaller sizes, mass and velocity dispersion and/or turbulence than
star-forming clumps, suggesting a quiescent prestellar stage and/or the
formation of less massive stars.Comment: 20 pages, 9 Figures, 1 appendix (to appear in full online only, a
sample appendix in the paper); 7 tables. Accepted by MNRA
Tracing the Conversion of Gas into Stars in Young Massive Cluster Progenitors
Whilst young massive clusters (YMCs; 10 M, age
100 Myr) have been identified in significant numbers, their
progenitor gas clouds have eluded detection. Recently, four extreme molecular
clouds residing within 200 pc of the Galactic centre have been identified as
having the properties thought necessary to form YMCs. Here we utilise far-IR
continuum data from the Herschel Infrared Galactic Plane Survey (HiGAL) and
millimetre spectral line data from the Millimetre Astronomy Legacy Team 90 GHz
Survey (MALT90) to determine their global physical and kinematic structure. We
derive their masses, dust temperatures and radii and use virial analysis to
conclude that they are all likely gravitationally bound -- confirming that they
are likely YMC progenitors. We then compare the density profiles of these
clouds to those of the gas and stellar components of the Sagittarius B2 Main
and North proto-clusters and the stellar distribution of the Arches YMC. We
find that even in these clouds -- the most massive and dense quiescent clouds
in the Galaxy -- the gas is not compact enough to form an Arches-like ( =
2x10 M, R = 0.4 pc) stellar distribution. Further
dynamical processes would be required to condense the resultant population,
indicating that the mass becomes more centrally concentrated as the
(proto)-cluster evolves. These results suggest that YMC formation may proceed
hierarchically rather than through monolithic collapse.Comment: 12 pages, 8 figures, 1 table. Accepted by MNRA
The molecular environment of massive star forming cores associated with Class II methanol maser emission
Methanol maser emission has proven to be an excellent signpost of regions
undergoing massive star formation (MSF). To investigate their role as an
evolutionary tracer, we have recently completed a large observing program with
the ATCA to derive the dynamical and physical properties of molecular/ionised
gas towards a sample of MSF regions traced by 6.7 GHz methanol maser emission.
We find that the molecular gas in many of these regions breaks up into multiple
sub-clumps which we separate into groups based on their association
with/without methanol maser and cm continuum emission. The temperature and
dynamic state of the molecular gas is markedly different between the groups.
Based on these differences, we attempt to assess the evolutionary state of the
cores in the groups and thus investigate the role of class II methanol masers
as a tracer of MSF.Comment: 5 pages, 1 figure, IAU Symposium 242 Conference Proceeding
High Performance Algorithms for Counting Collisions and Pairwise Interactions
The problem of counting collisions or interactions is common in areas as
computer graphics and scientific simulations. Since it is a major bottleneck in
applications of these areas, a lot of research has been carried out on such
subject, mainly focused on techniques that allow calculations to be performed
within pruned sets of objects. This paper focuses on how interaction
calculation (such as collisions) within these sets can be done more efficiently
than existing approaches. Two algorithms are proposed: a sequential algorithm
that has linear complexity at the cost of high memory usage; and a parallel
algorithm, mathematically proved to be correct, that manages to use GPU
resources more efficiently than existing approaches. The proposed and existing
algorithms were implemented, and experiments show a speedup of 21.7 for the
sequential algorithm (on small problem size), and 1.12 for the parallel
proposal (large problem size). By improving interaction calculation, this work
contributes to research areas that promote interconnection in the modern world,
such as computer graphics and robotics.Comment: Accepted in ICCS 2019 and published in Springer's LNCS series.
Supplementary content at https://mjsaldanha.com/articles/1-hpc-ssp
RR Lyrae variables in Galactic globular clusters: IV. Synthetic HB and RR Lyrae predictions
We present theoretical predictions concerning horizontal branch stars in
globular clusters, including RR Lyrae variables, as derived from synthetic
procedures collating evolutionary and pulsational constraints. On this basis,
we explore the predicted behavior of the pulsators as a function of the
horizontal branch morphology and over the metallicity range Z=0.0001 to 0.006,
revealing an encouraging concordance with the observed distribution of
fundamentalised periods with metallicity. Theoretical relations connecting
periods to K magnitudes and BV or VI Wesenheit functions are presented, both
appearing quite independent of the horizontal branch morphology only with Z
greater or equal than 0.001. Predictions concerning the parameter R are also
discussed and compared under various assumptions about the horizontal branch
reference luminosity level.Comment: 11 pages, 10 figures. Accepted for publication in "Astronomy and
Astrophysics
- …
