1,330 research outputs found

    Ks-band (2.14 micron) imaging of southern massive star formation regions traced by methanol masers

    Full text link
    We present deep, wide-field, Ks-band (2.14 micron) images towards 87 southern massive star formation regions traced by methanol maser emission. Using point-spread function fitting, we generate 2.14 micron point source catalogues towards each of the regions. For the regions between 10 degrees and 350 degrees galactic longitude and galactic latitude +/- 1 degree, we match the 2.14 micron sources with the GLIMPSE point source catalogue to generate a combined 2.14 to 8.0 micron point source catalogue. We provide this data for the astronomical community to utilise in studies of the stellar content of embedded clusters.Comment: Accepted PASA. Full version including figures available from http://www.cfa.harvard.edu/~slongmor/snl_iris2_withfigs.pd

    Physical characterisation of southern massive star-forming regions using Parkes NH3_3 observations

    Full text link
    We have undertaken a Parkes ammonia spectral line study, in the lowest two inversion transitions, of southern massive star formation regions, including young massive candidate protostars, with the aim of characterising the earliest stages of massive star formation. 138 sources from the submillimetre continuum emission studies of Hill et al., were found to have robust (1,1) detections, including two sources with two velocity components, and 102 in the (2,2) transition. We determine the ammonia line properties of the sources: linewidth, flux density, kinetic temperature, NH3_3 column density and opacity, and revisit our SED modelling procedure to derive the mass for 52 of the sources. By combining the continuum emission information with ammonia observations we substantially constrain the physical properties of the high-mass clumps. There is clear complementarity between ammonia and continuum observations for derivations of physical parameters. The MM-only class, identified in the continuum studies of Hill et al., display smaller sizes, mass and velocity dispersion and/or turbulence than star-forming clumps, suggesting a quiescent prestellar stage and/or the formation of less massive stars.Comment: 20 pages, 9 Figures, 1 appendix (to appear in full online only, a sample appendix in the paper); 7 tables. Accepted by MNRA

    Tracing the Conversion of Gas into Stars in Young Massive Cluster Progenitors

    Full text link
    Whilst young massive clusters (YMCs; MM \gtrsim 104^{4} M_{\odot}, age \lesssim 100 Myr) have been identified in significant numbers, their progenitor gas clouds have eluded detection. Recently, four extreme molecular clouds residing within 200 pc of the Galactic centre have been identified as having the properties thought necessary to form YMCs. Here we utilise far-IR continuum data from the Herschel Infrared Galactic Plane Survey (HiGAL) and millimetre spectral line data from the Millimetre Astronomy Legacy Team 90 GHz Survey (MALT90) to determine their global physical and kinematic structure. We derive their masses, dust temperatures and radii and use virial analysis to conclude that they are all likely gravitationally bound -- confirming that they are likely YMC progenitors. We then compare the density profiles of these clouds to those of the gas and stellar components of the Sagittarius B2 Main and North proto-clusters and the stellar distribution of the Arches YMC. We find that even in these clouds -- the most massive and dense quiescent clouds in the Galaxy -- the gas is not compact enough to form an Arches-like (MM = 2x104^{4} M_{\odot}, Reff_{eff} = 0.4 pc) stellar distribution. Further dynamical processes would be required to condense the resultant population, indicating that the mass becomes more centrally concentrated as the (proto)-cluster evolves. These results suggest that YMC formation may proceed hierarchically rather than through monolithic collapse.Comment: 12 pages, 8 figures, 1 table. Accepted by MNRA

    The molecular environment of massive star forming cores associated with Class II methanol maser emission

    Full text link
    Methanol maser emission has proven to be an excellent signpost of regions undergoing massive star formation (MSF). To investigate their role as an evolutionary tracer, we have recently completed a large observing program with the ATCA to derive the dynamical and physical properties of molecular/ionised gas towards a sample of MSF regions traced by 6.7 GHz methanol maser emission. We find that the molecular gas in many of these regions breaks up into multiple sub-clumps which we separate into groups based on their association with/without methanol maser and cm continuum emission. The temperature and dynamic state of the molecular gas is markedly different between the groups. Based on these differences, we attempt to assess the evolutionary state of the cores in the groups and thus investigate the role of class II methanol masers as a tracer of MSF.Comment: 5 pages, 1 figure, IAU Symposium 242 Conference Proceeding

    High Performance Algorithms for Counting Collisions and Pairwise Interactions

    Full text link
    The problem of counting collisions or interactions is common in areas as computer graphics and scientific simulations. Since it is a major bottleneck in applications of these areas, a lot of research has been carried out on such subject, mainly focused on techniques that allow calculations to be performed within pruned sets of objects. This paper focuses on how interaction calculation (such as collisions) within these sets can be done more efficiently than existing approaches. Two algorithms are proposed: a sequential algorithm that has linear complexity at the cost of high memory usage; and a parallel algorithm, mathematically proved to be correct, that manages to use GPU resources more efficiently than existing approaches. The proposed and existing algorithms were implemented, and experiments show a speedup of 21.7 for the sequential algorithm (on small problem size), and 1.12 for the parallel proposal (large problem size). By improving interaction calculation, this work contributes to research areas that promote interconnection in the modern world, such as computer graphics and robotics.Comment: Accepted in ICCS 2019 and published in Springer's LNCS series. Supplementary content at https://mjsaldanha.com/articles/1-hpc-ssp

    RR Lyrae variables in Galactic globular clusters: IV. Synthetic HB and RR Lyrae predictions

    Full text link
    We present theoretical predictions concerning horizontal branch stars in globular clusters, including RR Lyrae variables, as derived from synthetic procedures collating evolutionary and pulsational constraints. On this basis, we explore the predicted behavior of the pulsators as a function of the horizontal branch morphology and over the metallicity range Z=0.0001 to 0.006, revealing an encouraging concordance with the observed distribution of fundamentalised periods with metallicity. Theoretical relations connecting periods to K magnitudes and BV or VI Wesenheit functions are presented, both appearing quite independent of the horizontal branch morphology only with Z greater or equal than 0.001. Predictions concerning the parameter R are also discussed and compared under various assumptions about the horizontal branch reference luminosity level.Comment: 11 pages, 10 figures. Accepted for publication in "Astronomy and Astrophysics
    corecore