460 research outputs found
Low red to far-red light ratio promotes salt tolerance by improving leaf photosynthetic capacity in cucumber
Soil salinity severely inhibits leaf photosynthesis and limits agricultural production. Red to far-red light ratio (R/FR) affects leaf photosynthesis under salt stress, however, its regulation mechanism is still largely unknown. This study investigated the effects of different R/FR on plant growth, gas exchange parameters, photosynthetic electron transport, Calvin cycle and key gene expression under salt stress. Cucumber seedlings were exposed to four treatments including 0 mM NaCl and R/FR=7 (L7, control), 0 mM NaCl and R/FR=0.7 (L0.7), 80 mM NaCl and R/FR=7 (H7) and 80 mM NaCl and R/FR=0.7 (H0.7) for 9 days in an artificial climate chamber. The results showed that compared to L7 treatment, H7 treatment significantly reduced relative growth rate (RGR), CO2 assimilation rate (Pn), maximum photochemical efficiency PSII (Fv/Fm), most JIP-test parameters and total Rubisco activity, indicating that salt stress severely inhibited photosynthetic electron transport from PSII to PSI and blocked Calvin cycle in cucumber leaves. However, these suppressions were effectively alleviated by low R/FR addition (H0.7 treatment). Compared to H7 treatment, H0.7 treatment significantly increased RGR and Pn by 209.09% and 7.59%, respectively, enhanced Fv/Fm, maximum quantum yield for primary photochemistry (φPo), quantum yield for electron transport (φEo) and total Rubisco activity by 192.31%, 17.6%, 36.84% and 37.08%, respectively, and largely up-regulated expressions of most key genes involved in electron transport and Calvin cycle. In conclusion, low R/FR effectively alleviated the negative effects of salt stress on leaf photosynthesis by accelerating photosynthetic electron transport from PSII to PQ pool and promoting Calvin cycle in cucumber plants. It provides a novel environmentally friendly light-quality regulation technology for high efficiency salt-resistant vegetable production
Geochemical process and water quality evaluation of karst groundwater in the Baiquan Spring area under exploitation of coal and iron resources and inflow of southern water into Hebei Province
Under the new water situation of the south water into Hebei, the groundwater environment of Baiquan Spring area has been changed, and the geochemical process of karst groundwater needs to be clarified.In this research, numerical simulation, machine learning (self-organized clustering) and isotope (δD and δ18O) methods were used to systematically reveal the geochemical processes of karst groundwater in the Baiquan Spring area under the mining activities and the inflow of water from the south into Hebei Province, and the water quality was evaluated on the basis of entropy-variable weighted water quality index(EWQI). After the entry of south water into Hebei, the karst groundwater level in the Baiquan spring area was raised as a whole. Temporally, it presented both inter-annual dynamic changes and intra-annual seasonal changes. Spatially, the recharge area displayed a drastic change type, while the runoff and discharge areas showed a slow change type.The groundwater dropping funnel was mainly distributed in the coal and iron ore intensive area in the southeast of the spring area. The karst groundwater in the spring area was weakly alkaline, and the hydrochemical types were dominated by Ca−HCO3 and Ca−SO4 types. The major anion and cation concentrations followed the order of ρ(\begin{document}\end{document}) > ρ(\begin{document}\end{document}) > ρ(Cl−) and ρ(Ca2+) > ρ(Mg2+) > ρ(Na+) > ρ(K+). The ions showed a gradually increasing distribution pattern along the runoff path.Karst groundwater chemistry was dominated by weathering dissolution of rocks (calcite, dolomite and gypsum) and reverse cation exchange.The contents of \begin{document}\end{document} and \begin{document}\end{document} in karst groundwater system in spring were affected by anthropogenic activities to some extent.Karst groundwater was derived from atmospheric precipitation and underwent secondary evaporation prior to infiltration, with the deuterium surplus value being reduced during runoff.The results of the water quality evaluation showed that the quality of karst groundwater was overall better than quaternary groundwater. Approximately 50% of the karst water and 37.5% of the quaternary water samples were suitable for drinking purposes, respectively. TDS, ρ(\begin{document}\end{document}) and ρ(\begin{document}\end{document}) are crucial indicators affecting groundwater quality in the spring area.Potential anthropogenic activities causing water quality degradation in the karst groundwater system of the springs mainly include mine drainage, agricultural irrigation, and urban sewage discharge.Groundwater environmental protection measures for the spring area were proposed through water quality grading evaluation.The research results will be helpful to provide reference for the safety of water supply and the protection of groundwater environment in Baiquanspring area
A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs
BACKGROUND: Predicting piwi-interacting RNA (piRNA) is an important topic in the small non-coding RNAs, which provides clues for understanding the generation mechanism of gamete. To the best of our knowledge, several machine learning approaches have been proposed for the piRNA prediction, but there is still room for improvements. RESULTS: In this paper, we develop a genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. We construct datasets for three species: Human, Mouse and Drosophila. For each species, we compile the balanced dataset and imbalanced dataset, and thus obtain six datasets to build and evaluate prediction models. In the computational experiments, the genetic algorithm-based weighted ensemble method achieves 10-fold cross validation AUC of 0.932, 0.937 and 0.995 on the balanced Human dataset, Mouse dataset and Drosophila dataset, respectively, and achieves AUC of 0.935, 0.939 and 0.996 on the imbalanced datasets of three species. Further, we use the prediction models trained on the Mouse dataset to identify piRNAs of other species, and the models demonstrate the good performances in the cross-species prediction. CONCLUSIONS: Compared with other state-of-the-art methods, our method can lead to better performances. In conclusion, the proposed method is promising for the transposon-derived piRNA prediction. The source codes and datasets are available in https://github.com/zw9977129/piRNAPredictor. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1206-3) contains supplementary material, which is available to authorized users
Preventive effect of zoledronic acid on aromatase inhibitor-associated bone loss for postmenopausal breast cancer patients receiving adjuvant letrozole
BACKGROUND: This study aims to compare the efficacy and safety between zoledronic acid combined with calcium and calcium alone to prevent aromatase inhibitor-associated bone loss for postmenopausal breast cancer patients receiving adjuvant letrozole. METHODS: One hundred twenty patients were randomly divided into two groups, A and B. Patients in group A (n=60) received modified radical mastectomy or breast-conserving surgery + four cycles of AC followed by T regimen (optional) + radiotherapy (optional) + letrozole 2.5 mg daily + calcium 500 mg twice daily + vitamin D 400 international units daily +4 mg of zoledronic acid every 6 months, while patients in group B (n=60) were not given zoledronic acid and the rest of the treatments of group B were the same as group A. All the patients were followed up for 1 year. The primary endpoint was the intrapatient percentage change in lumbar spine (LS) bone mineral density (BMD) from baseline to month 12. Secondary endpoints included the percentage change in total hip (TH) and femoral neck (FN) BMD, the incidence of osteoporosis, the incidence of a clinically meaningful 5% decline in BMD at 1 year, change of serum N-telopeptide of type 1 collagen (NTX) and bone-specific alkaline phosphatase (BSAP) concentrations. RESULTS: Patients in group A had a statistically significant higher average change and average percent change in LS, FN, and TH than group B. Group A had a statistically significant lower incidence of a clinically meaningful loss of bone density at the LS, FN, or TH than Group B. The incidence of osteoporosis in group A was significantly lower than group B. The decreases in NTX and BSAP concentrations from baseline to month 12 in patients of group A were significant; in contrast, patients in group B were found to have increases in NTX and BSAP concentrations from baseline. The most common adverse reactions in patients are flu-like symptoms (38%), bone pain (28%), and joint pain (20%). CONCLUSION: AI-associated bone loss can be prevented by concurrent zoledronic acid for postmenopausal breast cancer patients
LA-ICP-MS Mapping and Element Distribution Characteristics of Garnet from the Altered Wall-rock of the Gongchangling Iron Deposit in Liaoning Province
BACKGROUNDWith the advantage of high spatial resolution, low detection limit, and multi-element surface analysis, the mapping technique of laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) provides a new method for mineralogy research, which can display the element distribution characteristics in minerals, and constrain the evolution process of the ore-genesis fluid and ore genesis. The wall-rocks of magnetite-rich ore from the No.2 mining area of the Gongchangling iron deposit suffered obvious alteration, and the scale of magnetite-rich ore is roughly proportional to intensity of alteration. However, regarding the hydrothermal nature, it is argued for metamorphic or magmatic hydrothermal fluid. The garnet widely occurs in the altered wall-rock, which is closely related to the genesis of the magnetite-rich ore. Thus, by LA-ICP-MS mapping of garnet in the altered wall-rock of Gongchangling magnetite-rich ore, the element composition and distribution characteristics can be used to constrain the evolution process of hydrothermal fluid and the genesis of the magnetite-rich ore.OBJECTIVESTo study the composition and distribution characteristics of major and trace elements in garnet by LA-ICP-MS mapping, and to constrain the evolution process of the ore-forming fluid and the genesis of magnetite-rich ore.METHODSThe LA-ICP-MS mapping technique was applied to garnets from the Gongchangling No.2 mining area by simultaneously using Agilent 7700X inductively coupled plasma-mass spectrometry (ICP-MS) and Analyte Excite 193nm laser ablation system at the laboratory of mineralization and dynamics in Chang’an University, with laser frequencies of 10-20Hz, laser ablation spot sizes of 20-150μm square, laser ablation speeds of 20-150μm/s and laser ablation energy of 5.9J/cm2, within 4 hours. Fifty-one elements (from 7Li to 238U) were chosen for ICP-MS analysis and the dwell time of each element was 6ms. This method adopted an external standard (NIST610) as the calibration standard without an internal standard. The result was semi-quantitative and the color brightness was used to represent the elemental content. The Iolite software can be used to generate multi-elemental pictures and elemental ratio mappings, to facilitate data analysis and interpretation for geologists.RESULTS (1) LA-ICP-MS mapping indicates that the Si, Al, Fe, La, Ce, Pr and Nd compositions of the centimeter-scale garnet (Grt-1, particle size of 1.5cm×1.5cm) from the altered wall-rock are homogeneous, while the Mg, Mn, Ca, Li, Sc, V, heavy rare earth elements (HREEs) and Y retain the original compositional zonation. Most elements in the smaller garnet (Grt-2, particle size of 0.6cm×0.7cm) are mainly homogenized without zonation. (2) The two garnets from the altered wall-rock of the Gongchangling iron deposit show different elemental distribution. The centimeter-scale garnets (Grt-1) are more likely to retain the original compositional zonation when the metamorphic temperature is below 600℃. The results of LA-ICP-MS mapping of the centimeter-scale garnet (Grt-1) reveal the element correlations, to better understand the geochemical process in minerals. (3) The Mg content gradually increases and Mn content gradually decreases from the core to the rim of the garnet, indicating that the formation of the Gongchangling garnet is controlled by equilibrium growth and the formation temperature of the garnet gradually increases from the core to the rim. The Ca content of the garnet increases firstly and then decreases from the core to the rim, indicating that the pressure increases firstly and then decreases, which is consistent with the garnet formed during prograde metamorphism. The δEu anomalies of the garnet decreases firstly and then increases from the core to the rim, indicating that the oxygen fugacity of the metamorphic hydrothermal fluid decreases firstly and then increases. Since the characteristics of HREEs and Y in garnet are consistent with the characteristics of Ca, it is inferred that the distribution of the HREEs and Y is also mainly controlled by pressure.CONCLUSIONSThe centimeter-scale garnet from the Gongchangling altered wall-rock retains the original compositional zonation, and the LA-ICP-MS elemental mapping of the centimeter-scale garnet can be completed within 4 hours. The element distribution in the garnet indicates that the temperature gradually increases, the pressure increases firstly and then decreases, and the oxygen fugacity decreases firstly and then increases in the evolution process of the metamorphic hydrothermal fluid. Thus, it is inferred that the garnet in the altered wall-rock of the Gongchangling magnetite-rich ore was formed in the stage of prograde metamorphism associated with the Jiao—Liao—Ji Belt, and the magnetite-rich ore was derived from the reformation of BIF (low-grade iron ore) by metamorphic hydrothermal fluid
Perioperative management of severe factor VII deficiency: a single-center experience in China
IntroductionInherited factor VII (FVII) deficiency is a rare autosomal recessive disorder whose clinical phenotypes are highly variable. Many studies have observed the absence of a clear-cut and consistent correlation between bleeding symptoms and FVII levels. Perioperative bleeding is a major concern in patients with FVII deficiency, but validated recommendations about the perioperative management of replacement therapy (RT) with FVII are lacking.MethodsOur study retrospectively summarized and analyzed the perioperative hemostasis management of severe FVII deficiency in 20 patients.ResultsWe found that replacement therapy is generally effective and that there is no significant correlation between the perioperative hemorrhagic complications after RT and the severity of FVII level before RT. Through multivariate statistical analysis and a retrospective analysis of other coagulation factor deficiencies at our center, we found that postoperative secondary hyperfibrinolysis in patients with FVII deficiency may not be universal.DiscussionAntifibrinolytic treatment may be necessary for patients undergoing surgery at sites with high fibrinolytic activity during the perioperative period. In addition, clinical data such as bleeding phenotype, bleeding history, and surgical sites should be given appropriate attention in perioperative treatment and monitoring
A rapid identification model of mine water inrush based on PSO-XGBoost
Mine water inrush is one of the main threats to mine safety production. Rapid analysis of the cause of water inrush and accurate identification of water inrush source are the key steps of mine water inrush disaster control. In order to effectively prevent and control mine water inrush disaster and identify mine water inrush source accurately and quickly, a mine water inrush source identification model (PSO-XGBoost) based on particle swarm optimization algorithm (PSO) and limit gradient lifting regression tree (XGBoost) was proposed. The efficiency and accuracy of water inrush source identification were further improved by the efficient parameter global search model, and the model was successfully applied to the Laohutai mine in Fushun coal field, Liaoning Province to verify the practicability of the model. Based on the spectral data of 40 groups of water samples from Laohutai mine, the original spectral data were preprocessed by multiple scattering correction, smoothing denoising, standardization and principal component analysis, and the training set and test set were divided according to the ratio of 7∶3 according to stratified random sampling. Secondly, the individual optimal value and the global optimal value of particles are initialized, and PSO is used to iteratively optimize seven parameters of XGBoost algorithm, such as learning_rate, n_estimatiors, max_depth, etc., to construct the classification and recognition model under the optimal parameter combination. To further investigate the superiority of the model, the average discrimination accuracy and log loss value were selected as evaluation indexes to compare the classification recognition results of PSO-XGBoost model with PSO-SVM and PSO-RF models, while the generalization ability of each model was evaluated by 100 repetitions of cross-validation. The comparison results showed that the average discrimination accuracies of XGBoost, PSO-SVM, PSO-RF and PSO-XGBoost models for the test set data were 87.76%, 87.56%, 91.67% and 91.67%, respectively. For repeated cross-validation, the average accuracy of XGBoost, PSO-SVM, PSO-RF, and PSO-XGBoost models were 87.76%, 87.56%, 90.63%, and 93.18%, respectively, with corresponding log-loss averages of 0.5453, 0.5460, 0.5623, and 0.4534, respectively. Comprehensive analysis of evaluation indexes shows that PSO-XGBoost model has higher discrimination accuracy and better generalization ability in mine water inrush source identification
Critical Role of lncEPAT in Coupling Dysregulated EGFR Pathway and Histone H2A Deubiquitination During Glioblastoma Tumorigenesis
Histone 2A (H2A) monoubiquitination is a fundamental epigenetics mechanism of gene expression, which plays a critical role in regulating cell fate. However, it is unknown if H2A ubiquitination is involved in EGFR-driven tumorigenesis. In the current study, we have characterized a previously unidentified oncogenic lncRNA (lncEPAT) that mediates the integration of the dysregulated EGFR pathway with H2A deubiquitination in tumorigenesis. LncEPAT was induced by the EGFR pathway, and high-level lncEPAT expression positively correlated with the glioma grade and predicted poor survival of glioma patients. Mass spectrometry analyses revealed that lncEPAT specifically interacted with deubiquitinase USP16. LncEPAT inhibited USP16\u27s recruitment to chromatin, thereby blocking USP16-mediated H2A deubiquitination and repressing target gene expression, includin
Depiction of immune heterogeneity of peripheral blood from patients with type II diabetic nephropathy based on mass cytometry
Diabetic nephropathy (DN) is the most prominent cause of chronic kidney disease and end-stage renal failure. However, the pathophysiology of DN, especially the risk factors for early onset remains elusive. Increasing evidence has revealed the role of the innate immune system in developing DN, but relatively little is known about early immunological change that proceeds from overt DN. Herein, this work aims to investigate the immune-driven pathogenesis of DN using mass cytometry (CyTOF). The peripheral blood mononuclear lymphocytes (PBMC) from 6 patients with early-stage nephropathy and 7 type II diabetes patients without nephropathy were employed in the CyTOF test. A panel that contains 38 lineage markers was designed to monitor immune protein levels in PBMC. The unsupervised clustering analysis was performed to profile the proportion of individual cells. t-Distributed Stochastic Neighbor Embedding (t-SNE) was used to visualize the differences in DN patients’ immune phenotypes. Comprehensive immune profiling revealed substantial immune system alterations in the early onset of DN, including the significant decline of B cells and the marked increase of monocytes. The level of CXCR3 was dramatically reduced in the different immune cellular subsets. The CyTOF data classified the fine-grained differential immune cell subsets in the early stage of DN. Innovatively, we identified several significant changed T cells, B cell, and monocyte subgroups in the early-stage DN associated with several potential biomarkers for developing DN, such as CTLA-4, CXCR3, PD-1, CD39, CCR4, and HLA-DR. Correlation analysis further demonstrated the robust relationship between above immune cell biomarkers and clinical parameters in the DN patients. Therefore, we provided a convincible view of understanding the immune-driven early pathogenesis of DN. Our findings exhibited that patients with DN are more susceptible to immune system disorders. The classification of fine-grained immune cell subsets in this present research might provide novel targets for the immunotherapy of DN
- …
