9,771 research outputs found
Fabrication of high efficiency and radiation resistant GaAs solar cells
Systematic improvements in fabrication yield were obtained by appropriate control of the liquid phase epitaxial growth process, contact fabrication and surface preparation. To improve radiation hardness, the junction depth was decreased while overcoming the penalty in decreased solar cell efficiency which tends to go hand-in-hand with the reduction of junction depth in (AlGa) As-GaAs solar cells. Cells were made with an AMO efficiency of 18% and a junction depth of 0.5 micrometers, as compared to junction depths on the order of 1.0 micrometers. With respect to the damage caused by proton irradiation, the nature of the observed damage was correlated to the energy and penetration depth of the damaging protons
A binary signature in the non-thermal radio-emitter Cyg OB2 #9
Aims: Non-thermal radio emission associated with massive stars is believed to
arise from a wind-wind collision in a binary system. However, the evidence of
binarity is still lacking in some cases, notably Cyg OB2 #9 Methods: For
several years, we have been monitoring this heavily-reddened star from various
observatories. This campaign allowed us to probe variations both on short and
long timescales and constitutes the first in-depth study of the visible
spectrum of this object. Results: Our observations provide the very first
direct evidence of a companion in Cyg OB2 #9, confirming the theoretical
wind-wind collision scenario. These data suggest a highly eccentric orbit with
a period of a few years, compatible with the 2yr-timescale measured in the
radio range. In addition, the signature of the wind-wind collision is very
likely reflected in the behaviour of some emission lines.Comment: accepted by A&A, 4 p, 3figure
Low energy proton radiation damage to (AlGa)As-GaAs solar cells
Twenty-seven 2 times 2 sq cm (AlGa)As-GaAs solar cells were fabricated and subjected to 50 keV, 100 keV, and 290 keV of proton irradiation along with eighteen high efficiency silicon solar cells. The results of the study further corroborate the advantages for space missions offered by GaAs cells over state of the art silicon cells. Thus, even though the GaAs cells showed greater degradation when irradiated by protons with energy less than 5 MeV, the solar cells were normally protected from these protons by the glass covers used in space arrays. The GaAs cells also offered superior end of life power capability compared with silicon. The change in the open circuit voltage, short circuit current, spectral response, and dark 1-5 characteristics after irradiation at each proton energy and fluence were found to be consistent with the explanation of the effect of the protons. Also dark 1-5 characteristics showed that a new recombination center dominates the current transport mechanism after irradiation
Molecular Clouds: Internal Properties, Turbulence, Star Formation and Feedback
All stars are born in molecular clouds, and most in giant molecular clouds
(GMCs), which thus set the star formation activity of galaxies. We first review
their observed properties, including measures of mass surface density, Sigma,
and thus mass, M. We discuss cloud dynamics, concluding most GMCs are
gravitationally bound. Star formation is highly clustered within GMCs, but
overall is very inefficient. We compare properties of star-forming clumps with
those of young stellar clusters (YSCs). The high central densities of YSCs may
result via dynamical evolution of already-formed stars during and after star
cluster formation. We discuss theoretical models of GMC evolution, especially
addressing how turbulence is maintained, and emphasizing the importance of GMC
collisions. We describe how feedback limits total star formation efficiency,
epsilon, in clumps. A turbulent and clumpy medium allows higher epsilon,
permitting formation of bound clusters even when escape speeds are less than
the ionized gas sound speed.Comment: Invited review, IAU Symp. 292 Molecular Gas, Dust, and Star Formation
in Galaxie
Medium energy proton radiation damage to (AlGa)As-GaAs solar cells
The performance of (AlGa)As-GaAs solar cells irradiated by medium energy 2, 5, and 10 MeV protons was evaluated. The Si cells without coverglass and a number of GaAs solar cells with 12 mil coverglass were irradiated simultaneously with bare GaAs cells. The cell degradation is directly related to the penetration of depth of protons with GaAs. The influence of periodic and continuous thermal annealing on the GaAs solar cells was investigated
Adaptive Transmission Techniques for Mobile Satellite Links
Adapting the transmission rate in an LMS channel is a challenging task
because of the relatively fast time variations, of the long delays involved,
and of the difficulty in mapping the parameters of a time-varying channel into
communication performance. In this paper, we propose two strategies for dealing
with these impairments, namely, multi-layer coding (MLC) in the forward link,
and open-loop adaptation in the return link. Both strategies rely on
physical-layer abstraction tools for predicting the link performance. We will
show that, in both cases, it is possible to increase the average spectral
efficiency while at the same time keeping the outage probability under a given
threshold. To do so, the forward link strategy will rely on introducing some
latency in the data stream by using retransmissions. The return link, on the
other hand, will rely on a statistical characterization of a physical-layer
abstraction measure.Comment: Presented at the 30th AIAA International Communications Satellite
Systems Conference (ICSSC), Ottawa, Canada, 2012. Best Professional Paper
Awar
Low-crosstalk bifurcation detectors for coupled flux qubits
We present experimental results on the crosstalk between two AC-operated
dispersive bifurcation detectors, implemented in a circuit for high-fidelity
readout of two strongly coupled flux qubits. Both phase-dependent and
phase-independent contributions to the crosstalk are analyzed. For proper
tuning of the phase the measured crosstalk is 0.1 % and the correlation between
the measurement outcomes is less than 0.05 %. These results show that
bifurcative readout provides a reliable and generic approach for multi-partite
correlation experiments.Comment: Copyright 2010 American Institute of Physics. This article may be
downloaded for personal use only. Any other use requires prior permission of
the author and the American Institute of Physics. The following article
appeared in Applied Physics Letters and may be found at
http://link.aip.org/link/?apl/96/12350
GaAs solar cells for concentrator systems in space
Cells for operation in space up to more than 100 suns were made, and an AMO efficiency of 21% at 100 suns with these cells was obtained. The increased efficiency resulted not only from the higher open circuit voltage associated with the higher light intensity (higher short circuit current); it also benefitted from the increase in fill factor caused by the lower relative contribution of the generation recombination current to the forward bias current when the cell's operating current density is increased. The experimental cells exhibited an AMO efficiency close to 16% at 200 C. The prospect of exploiting this capability for the continuous annealing of radiation damage or for high temperature missions (e.g., near Sun missions) remains therefore open. Space systems with concentration ratios on the order of 100 suns are presently under development. The tradeoff between increased concentration ratio and increased loss due to the cell's series resistance remains attractive even for space applications at a solar concentrator ratio of 100 suns. In the design of contact configuration with low enough series resistance for such solar concentration ratios, the shallow junction depth needed for good radiation hardness and the thin AlGaAs layer thickness needed to avoid excessive optical absorption losses have to be retained
- …
