770 research outputs found
Effects of sampling skewness of the importance-weighted risk estimator on model selection
Importance-weighting is a popular and well-researched technique for dealing
with sample selection bias and covariate shift. It has desirable
characteristics such as unbiasedness, consistency and low computational
complexity. However, weighting can have a detrimental effect on an estimator as
well. In this work, we empirically show that the sampling distribution of an
importance-weighted estimator can be skewed. For sample selection bias
settings, and for small sample sizes, the importance-weighted risk estimator
produces overestimates for datasets in the body of the sampling distribution,
i.e. the majority of cases, and large underestimates for data sets in the tail
of the sampling distribution. These over- and underestimates of the risk lead
to suboptimal regularization parameters when used for importance-weighted
validation.Comment: Conference paper, 6 pages, 5 figure
A review of domain adaptation without target labels
Domain adaptation has become a prominent problem setting in machine learning
and related fields. This review asks the question: how can a classifier learn
from a source domain and generalize to a target domain? We present a
categorization of approaches, divided into, what we refer to as, sample-based,
feature-based and inference-based methods. Sample-based methods focus on
weighting individual observations during training based on their importance to
the target domain. Feature-based methods revolve around on mapping, projecting
and representing features such that a source classifier performs well on the
target domain and inference-based methods incorporate adaptation into the
parameter estimation procedure, for instance through constraints on the
optimization procedure. Additionally, we review a number of conditions that
allow for formulating bounds on the cross-domain generalization error. Our
categorization highlights recurring ideas and raises questions important to
further research.Comment: 20 pages, 5 figure
On Regularization Parameter Estimation under Covariate Shift
This paper identifies a problem with the usual procedure for
L2-regularization parameter estimation in a domain adaptation setting. In such
a setting, there are differences between the distributions generating the
training data (source domain) and the test data (target domain). The usual
cross-validation procedure requires validation data, which can not be obtained
from the unlabeled target data. The problem is that if one decides to use
source validation data, the regularization parameter is underestimated. One
possible solution is to scale the source validation data through importance
weighting, but we show that this correction is not sufficient. We conclude the
paper with an empirical analysis of the effect of several importance weight
estimators on the estimation of the regularization parameter.Comment: 6 pages, 2 figures, 2 tables. Accepted to ICPR 201
Dissimilarity-based Ensembles for Multiple Instance Learning
In multiple instance learning, objects are sets (bags) of feature vectors
(instances) rather than individual feature vectors. In this paper we address
the problem of how these bags can best be represented. Two standard approaches
are to use (dis)similarities between bags and prototype bags, or between bags
and prototype instances. The first approach results in a relatively
low-dimensional representation determined by the number of training bags, while
the second approach results in a relatively high-dimensional representation,
determined by the total number of instances in the training set. In this paper
a third, intermediate approach is proposed, which links the two approaches and
combines their strengths. Our classifier is inspired by a random subspace
ensemble, and considers subspaces of the dissimilarity space, defined by
subsets of instances, as prototypes. We provide guidelines for using such an
ensemble, and show state-of-the-art performances on a range of multiple
instance learning problems.Comment: Submitted to IEEE Transactions on Neural Networks and Learning
Systems, Special Issue on Learning in Non-(geo)metric Space
Implicitly Constrained Semi-Supervised Linear Discriminant Analysis
Semi-supervised learning is an important and active topic of research in
pattern recognition. For classification using linear discriminant analysis
specifically, several semi-supervised variants have been proposed. Using any
one of these methods is not guaranteed to outperform the supervised classifier
which does not take the additional unlabeled data into account. In this work we
compare traditional Expectation Maximization type approaches for
semi-supervised linear discriminant analysis with approaches based on intrinsic
constraints and propose a new principled approach for semi-supervised linear
discriminant analysis, using so-called implicit constraints. We explore the
relationships between these methods and consider the question if and in what
sense we can expect improvement in performance over the supervised procedure.
The constraint based approaches are more robust to misspecification of the
model, and may outperform alternatives that make more assumptions on the data,
in terms of the log-likelihood of unseen objects.Comment: 6 pages, 3 figures and 3 tables. International Conference on Pattern
Recognition (ICPR) 2014, Stockholm, Swede
Alkoholi riskitarvitamine ja sellega seonduv tervis paikkonna tervisemõjurite uuringus
http://www.ester.ee/record=b476713
- …
