40,242 research outputs found

    Nonlinear chiral refrigerators

    Full text link
    We investigate a mesoscopic refrigerator based on chiral quantum Hall edge channels. We discuss a three-terminal cooling device in which charge transport occurs between a pair of voltage-biased terminals only. The third terminal, which is to be cooled, is set as a voltage probe with vanishing particle flux. This largely prevents the generation of direct Joule heating which ensures a high coefficient of performance. Cooling operation is based on energy-dependent quantum transmissions. The latter are implemented with the aid of two tunable scattering resonances (quantum dots). To find the optimal performance point and the largest temperature difference created with our refrigerator, it is crucial to address the nonlinear regime of transport, accounting for electron-electron interaction effects. Our numerical simulations show that the maximal cooling power can be tuned with the quantum dot couplings and energy levels. Further, we provide analytical expressions within a weakly nonlinear scattering-matrix formalism which allow us to discuss the conditions for optimal cooling in terms of generalized thermopowers. Our results are important for the assessment of chiral conductors as promising candidates for efficient quantum refrigerators with low dissipation.Comment: 9 pages, 4 figures. v2: minor changes. Published versio

    Massive star formation in Wolf-Rayet galaxies. IV: Colours, chemical composition analysis and metallicity-luminosity relations

    Full text link
    (Abridged) We performed a multiwavelength analysis of a sample of starburst galaxies that show the presence of a substantial population of very young massive (WR) stars. Here we present the global analysis of the derived photometric and chemical properties. We compare optical/NIR colours and the physical properties (reddening coefficient, equivalent widths of the emission and underlying absorption lines, ionization degree, electron density, and electron temperature) and chemical properties with previous observations and galaxy evolution models. Attending to their absolute B-magnitude many of them are not dwarf galaxies, but they should be during their quiescent phase. We found that both C(Hb) and Wabs increase with increasing metallicity. We detected a high N/O ratio in objects showing strong WR features. The ejecta of the WR stars may be the origin of the N enrichment in these galaxies. We compared the abundances provided by the direct method with those obtained using empirical calibrations, finding that (i) the Pilyugin method is the best suitable empirical calibration, (ii) the relations between the oxygen abundance and the N2 or the O3N2 parameters provided by Pettini & Pagel (2004) give acceptable results for objects with 12+log(O/H)>8.0, and (iii) the results provided by empirical calibrations based on photoionization models are systematically 0.2-0.3 dex higher than the values derived from the direct method. The O and N abundances and the N/O ratios are related to the optical/NIR luminosity; the dispersion is consequence of the differences in the star-formation histories. Galaxies with redder colours tend to have higher oxygen and nitrogen abundances. Our detailed analysis is fundamental to understand the nature of galaxies showing strong starbursts, as well as to know their star formation history and the relationships with the environment.Comment: 30 pages, 22 figures, accepted to A&A. Updated with the final version

    Cross thermoelectric coupling in normal-superconductor quantum dots

    Get PDF
    We discuss the nonlinear current of an interacting quantum dot coupled to normal and superconducting reservoirs with applied voltage and temperature differences. Due to the particle-hole symmetry introduced by the superconducting lead, the pure (subgap) thermoelectric response vanishes. However, we show that the Andreev bound states shift as the thermal gradient increases. As a consequence, the II--VV characteristic can be tuned with a temperature bias if the system is simultaneously voltage biased. This is a cross effect that occurs beyond linear response only. Furthermore, we emphasize the role of quasiparticle tunneling processes in the generation of high thermopower sensitivities.Comment: 6 pages, 5 figure

    Large thermoelectric power and figure of merit in a ferromagnetic-quantum dot-superconducting device

    Get PDF
    We investigate the thermoelectric properties of a quantum dot coupled to ferromagnetic and superconducting electrodes. The combination of spin polarized tunneling at the ferromagnetic-quantum dot interface and the application of an external magnetic field that Zeeman splits the dot energy level leads to large values of the thermopower (Seebeck coefficient). Importantly, the thermopower can be tuned with an external gate voltage connected to the dot. We compute the figure of merit that measures the efficiency of thermoelectric conversion and find that it attains high values. We discuss the different contributions from Andreev reflection processes and quasiparticle tunneling into and out of the superconducting contact. Furthermore, we obtain dramatic variations of both the magnetothermopower and the spin Seebeck effect, which suggest that in our device spin currents can be controlled with temperature gradients only.Comment: 9 pages, 6 figure

    Kondo effect in a quantum dot coupled to ferromagnetic leads: A numerical renormalization group analysis

    Full text link
    We investigate the effects of spin-polarized leads on the Kondo physics of a quantum dot using the numerical renormalization group method. Our study demonstrates in an unambiguous way that the Kondo effect is not necessarily suppressed by the lead polarization: While the Kondo effect is quenched for the asymmetric Anderson model, it survives even for finite polarizations in the regime where charge fluctuations are negligible. We propose the linear tunneling magnetoresistance as an experimental signature of these behaviors. We also report on the influence of spin-flip processes.Comment: 5 pages, 3 figures; To appear in Phys. Rev. Lett.; References added, several changes in the tex
    corecore