538 research outputs found

    Hyperfine splitting in heavy ions with the nuclear magnetization distribution determined from experiments on muonic atoms

    Full text link
    The hyperfine splitting in hydrogenlike 209^{209}Bi, 203^{203}Tl, and 205^{205}Tl is calculated with the nuclear magnetization determined from experimental data on the hyperfine splitting in the corresponding muonic atoms. The single-particle and configuration-mixing nuclear models are considered. The QED corrections are taken into account for both electronic and muonic atoms. The obtained results are compared with other calculations and with experiment.Comment: 8 pages, 5 tables, accepted for publication in Nuclear Instruments and Methods in Physics Research

    A novel method for unambiguous ion identification in mixed ion beams extracted from an EBIT

    Get PDF
    A novel technique to identify small fluxes of mixed highly charged ion beams extracted from an Electron Beam Ion Trap (EBIT) is presented and practically demonstrated. The method exploits projectile charge state dependent potential emission of electrons as induced by ion impact on a metal surface to separate ions with identical or very similar mass-to-charge ratio.Comment: 8 pages, 5 figure

    Empirically Derived Integrated Stellar Yields of Fe-Peak Elements

    Full text link
    We present here the initial results of a new study of massive star yields of Fe-peak elements. We have compiled from the literature a database of carefully determined solar neighborhood stellar abundances of seven iron-peak elements, Ti, V, Cr, Mn, Fe, Co, and Ni and then plotted [X/Fe] versus [Fe/H] to study the trends as functions of metallicity. Chemical evolution models were then employed to force a fit to the observed trends by adjusting the input massive star metallicity-sensitive yields of Kobayashi et al. Our results suggest that yields of Ti, V, and Co are generally larger as well as anticorrelated with metallicity, in contrast to the Kobayashi et al. predictions. We also find the yields of Cr and Mn to be generally smaller and directly correlated with metallicity compared to the theoretical results. Our results for Ni are consistent with theory, although our model suggests that all Ni yields should be scaled up slightly. The outcome of this exercise is the computation of a set of integrated yields, i.e., stellar yields weighted by a slightly flattened time-independent Salpeter initial mass function and integrated over stellar mass, for each of the above elements at several metallicity points spanned by the broad range of observations. These results are designed to be used as empirical constraints on future iron-peak yield predictions by stellar evolution modelers. Special attention is paid to the interesting behavior of [Cr/Co] with metallicity -- these two elements have opposite slopes -- as well as the indirect correlation of [Ti/Fe] with [Fe/H]. These particular trends, as well as those exhibited by the inferred integrated yields of all iron-peak elements with metallicity, are discussed in terms of both supernova nucleosynthesis and atomic physics.Comment: 27 pages, 6 figures; Accepted for Publication in the Astrophysical Journa

    Susceptibility of different life stages of Blattella germanica (Blattodea: Blattellidae) and Periplaneta fuliginosa (Blattodea: Blattidae) to entomopathogenic fungi

    Get PDF
    The susceptibility of nymphs and adults of the German cockroach, Blattella germanica Linnaeus (Blattodea: Blattellidae) and the smokybrown cockroach, Periplaneta fuliginosa Serville (Blattodea: Blattidae) to Argentinian isolates of the entomopathogenic fungi Metarhizium anisopliae (Metschn.) Sorokin (CEP 085) and Beauveria bassiana (Bals.-Criv.) Vuill. (CEP 077) was evaluated. Fungi were tested by using two different methods: bait and direct contact. Mortality was monitored daily for twenty days to obtain LT50. M. anisopliae produced 60 and 93% mortality in nymphs and adults of B. germanica, respectively, when conidia were applied by direct contact. The LT50 for adults was 3.8 days, and 8.6 days for nymphs. Direct contact of B. bassiana produced 80% mortality on adults of B. germanica with a LT50 of 4.9 days, and for nymphs 40 % mortality in 10 days. When B. germanica was exposed to bait, the level of mortality was significant in adults. Nymphs of P. fuliginosa were treated with bait with M. anisopliae and B. bassiana and they caused 50% mortality with a LT50 of 22 days, and LT50 of 27 days respectively. Nymphs and adults of P. fuliginosa treated by direct contact and adults treated with bait showed that mortality level was not significantly different as compared to the control. Results showed differences in susceptibility between the two species of cockroaches and between nymphs and adults of the same species. In addition, different responses to the fungal species with the two methods that were used in the bioassays have been demonstrated. This is the first report of susceptibility of P. fuliginosa to entomopathogenic fungi. This study demonstrates the potential of fungi as biocontrol agents against this pest.Fil: Gutierrez, Alejandra Concepción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Estudios Parasitológicos y de Vectores (i); Argentina. Universidad Nacional de La Plata; ArgentinaFil: García, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Estudios Parasitológicos y de Vectores (i); Argentina. Universidad Nacional de La Plata; ArgentinaFil: Alzogaray, Raul Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación de Plagas e Insecticidas; ArgentinaFil: Urrutia, María I.. Universidad Nacional de La Plata; ArgentinaFil: Lopez Lastra, Claudia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Estudios Parasitológicos y de Vectores (i); Argentina. Universidad Nacional de La Plata; Argentin

    Route Towards a Label-free Optical Waveguide Sensing Platform Based on Lossy Mode Resonances

    Get PDF
    According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip, which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications

    Noether's Theorem and time-dependent quantum invariants

    Full text link
    The time dependent-integrals of motion, linear in position and momentum operators, of a quantum system are extracted from Noether's theorem prescription by means of special time-dependent variations of coordinates. For the stationary case of the generalized two-dimensional harmonic oscillator, the time-independent integrals of motion are shown to correspond to special Bragg-type symmetry properties. A detailed study for the non-stationary case of this quantum system is presented. The linear integrals of motion are constructed explicitly for the case of varying mass and coupling strength. They are obtained also from Noether's theorem. The general treatment for a multi-dimensional quadratic system is indicated, and it is shown that the time-dependent variations that give rise to the linear invariants, as conserved quantities, satisfy the corresponding classical homogeneous equations of motion for the coordinates.Comment: Plain TeX, 23 pages, preprint of Instituto de Ciencias Nucleares, UNAM Departamento de F\ii sica and Matem\'aticas Aplicadas, No. 01 (1994

    Seasonal and spatial variability in plankton production and respiration in the Subtropical Gyres of the Atlantic Ocean

    Get PDF
    Euphotic zone plankton production (P) and respiration (R) were determined from the in vitro flux of dissolved oxygen during six latitudinal transects of the Atlantic Ocean, as part of the Atlantic Meridional Transect (AMT) programme. The transects traversed the North and South Atlantic Subtropical Gyres (N gyre, 18–38°N; S gyre, 11–35°S) in April–June and September–November 2003–2005. The route and timing of the cruises enabled the assessment of the seasonal variability of P, R and P/R in the N and S gyres, and the comparison of the previously unsampled N gyre centre with the more frequently sampled eastern edge of the gyre. Mean euphotic zone integrated rates (±SE) were P=63±23 (n=31), R=69±22 (n=30) mmol O2 m-2 d-1 in the N gyre; and P=58±26 (n=30), R=62±24 (n=30) mmol O2 m-2 d-1 in the S gyre. Overall, the N gyre was heterotrophic (R>P) and it was more heterotrophic than the S gyre, but the metabolic balance of both gyres changed with season. Both gyres were net heterotrophic in autumn, and balanced in spring. This seasonal contrast was most pronounced for the S gyre, because it was more autotrophic than the N gyre during spring. This may have arisen from differences in nitrate availability, because spring sampling in the S gyre coincided with periods of deep mixing to the nitracline, more frequently than spring sampling within the N gyre. Our results indicate that the N gyre is less heterotrophic than previous estimates suggested, and that there is an apparent decrease in R from the eastern edge to the centre of the N gyre, possibly indicative of an allochthonous organic carbon source to the east of the gyre
    corecore