538 research outputs found
Hyperfine splitting in heavy ions with the nuclear magnetization distribution determined from experiments on muonic atoms
The hyperfine splitting in hydrogenlike Bi, Tl, and
Tl is calculated with the nuclear magnetization determined from
experimental data on the hyperfine splitting in the corresponding muonic atoms.
The single-particle and configuration-mixing nuclear models are considered. The
QED corrections are taken into account for both electronic and muonic atoms.
The obtained results are compared with other calculations and with experiment.Comment: 8 pages, 5 tables, accepted for publication in Nuclear Instruments
and Methods in Physics Research
A novel method for unambiguous ion identification in mixed ion beams extracted from an EBIT
A novel technique to identify small fluxes of mixed highly charged ion beams
extracted from an Electron Beam Ion Trap (EBIT) is presented and practically
demonstrated. The method exploits projectile charge state dependent potential
emission of electrons as induced by ion impact on a metal surface to separate
ions with identical or very similar mass-to-charge ratio.Comment: 8 pages, 5 figure
Recommended from our members
Direct Observation of the Spontaneous Emission of the Hyperfine Transition F = 4 to F = 3 in Ground State Hydrogenlike 165Ho66+ in an Electron Beam Ion Trap
We report the first direct laboratory measurement of the spontaneous emission due to the hyperfine splitting of the ground state of a highly charged hydrogenlike ion excited by electron collisions. The transition between the F = 4 and F = 3 levels of the 1s2S1/2 configuration of hydrogenlike 165Ho65+ was observed and its wavelength was determined to 5726.4±1.5Å. After taking into account relativistic, nuclear charge distribution, Bohr-Weisskopf, and QED corrections, we observe a significant deviation from commonly tabulated values of the nuclear dipole magnetic moment of this nucleu
Recommended from our members
Precision measurement of the lifetime of the 1s2s3S1 metastable level in heliumlike O6+
The lifetime of the 1s2s3S1 level of the He-like O6+ ion has been measured using the Electron Beam Ion Trap in the magnetic trapping mode. A value of 956-4+5 μs is found, which corresponds to a radiative transition rate of 1046-5+4 s-1 for the magnetic dipole transition to the 1s21S0 ground state. This value is in excellent agreement with recent theoretical predictions and distinguishes among different treatments of negative energy states and correlation in multiconfiguration Dirac-Fock calculations
Empirically Derived Integrated Stellar Yields of Fe-Peak Elements
We present here the initial results of a new study of massive star yields of
Fe-peak elements. We have compiled from the literature a database of carefully
determined solar neighborhood stellar abundances of seven iron-peak elements,
Ti, V, Cr, Mn, Fe, Co, and Ni and then plotted [X/Fe] versus [Fe/H] to study
the trends as functions of metallicity. Chemical evolution models were then
employed to force a fit to the observed trends by adjusting the input massive
star metallicity-sensitive yields of Kobayashi et al. Our results suggest that
yields of Ti, V, and Co are generally larger as well as anticorrelated with
metallicity, in contrast to the Kobayashi et al. predictions. We also find the
yields of Cr and Mn to be generally smaller and directly correlated with
metallicity compared to the theoretical results. Our results for Ni are
consistent with theory, although our model suggests that all Ni yields should
be scaled up slightly. The outcome of this exercise is the computation of a set
of integrated yields, i.e., stellar yields weighted by a slightly flattened
time-independent Salpeter initial mass function and integrated over stellar
mass, for each of the above elements at several metallicity points spanned by
the broad range of observations. These results are designed to be used as
empirical constraints on future iron-peak yield predictions by stellar
evolution modelers. Special attention is paid to the interesting behavior of
[Cr/Co] with metallicity -- these two elements have opposite slopes -- as well
as the indirect correlation of [Ti/Fe] with [Fe/H]. These particular trends, as
well as those exhibited by the inferred integrated yields of all iron-peak
elements with metallicity, are discussed in terms of both supernova
nucleosynthesis and atomic physics.Comment: 27 pages, 6 figures; Accepted for Publication in the Astrophysical
Journa
Susceptibility of different life stages of Blattella germanica (Blattodea: Blattellidae) and Periplaneta fuliginosa (Blattodea: Blattidae) to entomopathogenic fungi
The susceptibility of nymphs and adults of the German cockroach, Blattella germanica Linnaeus (Blattodea: Blattellidae) and the smokybrown cockroach, Periplaneta fuliginosa Serville (Blattodea: Blattidae) to Argentinian isolates of the entomopathogenic fungi Metarhizium anisopliae (Metschn.) Sorokin (CEP 085) and Beauveria bassiana (Bals.-Criv.) Vuill. (CEP 077) was evaluated. Fungi were tested by using two different methods: bait and direct contact. Mortality was monitored daily for twenty days to obtain LT50. M. anisopliae produced 60 and 93% mortality in nymphs and adults of B. germanica, respectively, when conidia were applied by direct contact. The LT50 for adults was 3.8 days, and 8.6 days for nymphs. Direct contact of B. bassiana produced 80% mortality on adults of B. germanica with a LT50 of 4.9 days, and for nymphs 40 % mortality in 10 days. When B. germanica was exposed to bait, the level of mortality was significant in adults. Nymphs of P. fuliginosa were treated with bait with M. anisopliae and B. bassiana and they caused 50% mortality with a LT50 of 22 days, and LT50 of 27 days respectively. Nymphs and adults of P. fuliginosa treated by direct contact and adults treated with bait showed that mortality level was not significantly different as compared to the control. Results showed differences in susceptibility between the two species of cockroaches and between nymphs and adults of the same species. In addition, different responses to the fungal species with the two methods that were used in the bioassays have been demonstrated. This is the first report of susceptibility of P. fuliginosa to entomopathogenic fungi. This study demonstrates the potential of fungi as biocontrol agents against this pest.Fil: Gutierrez, Alejandra Concepción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Estudios Parasitológicos y de Vectores (i); Argentina. Universidad Nacional de La Plata; ArgentinaFil: García, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Estudios Parasitológicos y de Vectores (i); Argentina. Universidad Nacional de La Plata; ArgentinaFil: Alzogaray, Raul Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación de Plagas e Insecticidas; ArgentinaFil: Urrutia, María I.. Universidad Nacional de La Plata; ArgentinaFil: Lopez Lastra, Claudia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Estudios Parasitológicos y de Vectores (i); Argentina. Universidad Nacional de La Plata; Argentin
Route Towards a Label-free Optical Waveguide Sensing Platform Based on Lossy Mode Resonances
According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip, which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications
Noether's Theorem and time-dependent quantum invariants
The time dependent-integrals of motion, linear in position and momentum
operators, of a quantum system are extracted from Noether's theorem
prescription by means of special time-dependent variations of coordinates. For
the stationary case of the generalized two-dimensional harmonic oscillator, the
time-independent integrals of motion are shown to correspond to special
Bragg-type symmetry properties. A detailed study for the non-stationary case of
this quantum system is presented. The linear integrals of motion are
constructed explicitly for the case of varying mass and coupling strength. They
are obtained also from Noether's theorem. The general treatment for a
multi-dimensional quadratic system is indicated, and it is shown that the
time-dependent variations that give rise to the linear invariants, as conserved
quantities, satisfy the corresponding classical homogeneous equations of motion
for the coordinates.Comment: Plain TeX, 23 pages, preprint of Instituto de Ciencias Nucleares,
UNAM Departamento de F\ii sica and Matem\'aticas Aplicadas, No. 01 (1994
Recommended from our members
A high-resolution transmission-type x-ray spectrometer designed for observation of the Kα transitions of highly charged high-Z ions
High-resolution reflection-type crystal spectrometers have been used for x-ray energies up to 13 keV, e.g., the K-shell radiation of heliumlike Kr. In order to extend crystal spectrometer measurements to higher energy x rays from higher-Z elements, we employ the crystal in transmission. The geometry we use is known as DuMond geometry. Using such a transmission-type crystal x-ray spectrometer, we have measured the K-shell radiation of various highly charged high-Z ions. In particular, we present a measurement of the 1s2p 1P1→1s2 1S0 transition in heliumlike xenon, Xe52+. For this transition, we measure a linewidth of 34 eV, which demonstrates that the resolving power we achieved with the new spectrometer is on the order of 100
Seasonal and spatial variability in plankton production and respiration in the Subtropical Gyres of the Atlantic Ocean
Euphotic zone plankton production (P) and respiration (R) were determined from the in vitro flux of dissolved oxygen during six latitudinal transects of the Atlantic Ocean, as part of the Atlantic Meridional Transect (AMT) programme. The transects traversed the North and South Atlantic Subtropical Gyres (N gyre, 18–38°N; S gyre, 11–35°S) in April–June and September–November 2003–2005. The route and timing of the cruises enabled the assessment of the seasonal variability of P, R and P/R in the N and S gyres, and the comparison of the previously unsampled N gyre centre with the more frequently sampled eastern edge of the gyre. Mean euphotic zone integrated rates (±SE) were P=63±23 (n=31), R=69±22 (n=30) mmol O2 m-2 d-1 in the N gyre; and P=58±26 (n=30), R=62±24 (n=30) mmol O2 m-2 d-1 in the S gyre. Overall, the N gyre was heterotrophic (R>P) and it was more heterotrophic than the S gyre, but the metabolic balance of both gyres changed with season. Both gyres were net heterotrophic in autumn, and balanced in spring. This seasonal contrast was most pronounced for the S gyre, because it was more autotrophic than the N gyre during spring. This may have arisen from differences in nitrate availability, because spring sampling in the S gyre coincided with periods of deep mixing to the nitracline, more frequently than spring sampling within the N gyre. Our results indicate that the N gyre is less heterotrophic than previous estimates suggested, and that there is an apparent decrease in R from the eastern edge to the centre of the N gyre, possibly indicative of an allochthonous organic carbon source to the east of the gyre
- …
