937 research outputs found
Recommended from our members
Functional brain networks before the onset of psychosis: A prospective fMRI study with graph theoretical analysis☆☆☆
Individuals with an at-risk mental state (ARMS) have a risk of developing a psychotic disorder significantly greater than the general population. However, it is not currently possible to predict which ARMS individuals will develop psychosis from clinical assessment alone. Comparison of ARMS subjects who do, and do not, develop psychosis can reveal which factors are critical for the onset of illness. In the present study, 37 patients with an ARMS were followed clinically at least 24 months subsequent to initial referral. Functional MRI data were collected at the beginning of the follow-up period during performance of an executive task known to recruit frontal lobe networks and to be impaired in psychosis. Graph theoretical analysis was used to compare the organization of a functional brain network in ARMS patients who developed a psychotic disorder following the scan (ARMS-T) to those who did not become ill during the same follow-up period (ARMS-NT) and aged-matched controls. The global properties of each group's representative network were studied (density, efficiency, global average path length) as well as regionally-specific contributions of network nodes to the organization of the system (degree, farness-centrality, betweenness-centrality). We focused our analysis on the dorsal anterior cingulate cortex (ACC), a region known to support executive function that is structurally and functionally impaired in ARMS patients. In the absence of between-group differences in global network organization, we report a significant reduction in the topological centrality of the ACC in the ARMS-T group relative to both ARMS-NT and controls. These results provide evidence that abnormalities in the functional organization of the brain predate the onset of psychosis, and suggest that loss of ACC topological centrality is a potential biomarker for transition to psychosis
Hydrodynamic bubble coarsening in off-critical vapour-liquid phase separation
Late-stage coarsening in off-critical vapour-liquid phase separation is
re-examined. In the limit of bubbles of vapour distributed throughout a
continuous liquid phase, it is argued that coarsening proceeds via inertial
hydrodynamic bubble collapse. This replaces the Lifshitz-Slyozov-Wagner
mechanism seen in binary liquid mixtures. The arguments are strongly supported
by simulations in two dimensions using a novel single-component soft sphere
fluid.Comment: 5 pages, 3 figures, revtex3.
Altered dynamical integration/segregation balance during anesthesia-induced loss of consciousness
In recent years, brain imaging studies have begun to shed light on the neural correlates of physiologically-reversible altered states of consciousness such as deep sleep, anesthesia, and psychedelic experiences. The emerging consensus is that normal waking consciousness requires the exploration of a dynamical repertoire enabling both global integration i.e., long-distance interactions between brain regions, and segregation, i.e., local processing in functionally specialized clusters. Altered states of consciousness have notably been characterized by a tipping of the integration/segregation balance away from this equilibrium. Historically, functional MRI (fMRI) has been the modality of choice for such investigations. However, fMRI does not enable characterization of the integration/segregation balance at sub-second temporal resolution. Here, we investigated global brain spatiotemporal patterns in electrocorticography (ECoG) data of a monkey (Macaca fuscata) under either ketamine or propofol general anesthesia. We first studied the effects of these anesthetics from the perspective of band-specific synchronization across the entire ECoG array, treating individual channels as oscillators. We further aimed to determine whether synchrony within spatially localized clusters of oscillators was differently affected by the drugs in comparison to synchronization over spatially distributed subsets of ECoG channels, thereby quantifying changes in integration/segregation balance on physiologically-relevant time scales. The findings reflect global brain dynamics characterized by a loss of long-range integration in multiple frequency bands under both ketamine and propofol anesthesia, most pronounced in the beta (13–30 Hz) and low-gamma bands (30–80 Hz), and with strongly preserved local synchrony in all bands
Training of Instrumentalists and Development of New Technologies on SOFIA
This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal
Survey (Astro2010)1 Committee on the State of the Profession to emphasize the
potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to
contribute to the training of instrumentalists and observers, and to related
technology developments. This potential goes beyond the primary mission of
SOFIA, which is to carry out unique, high priority astronomical research.
SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable
astronomical observations anywhere, any time, and at most wavelengths between
0.3 microns and 1.6 mm not accessible from ground-based observatories. These
attributes, accruing from the mobility and flight altitude of SOFIA, guarantee
a wealth of scientific return. Its instrument teams (nine in the first
generation) and guest investigators will do suborbital astronomy in a
shirt-sleeve environment. The project will invest $10M per year in science
instrument development over a lifetime of 20 years. This, frequent flight
opportunities, and operation that enables rapid changes of science instruments
and hands-on in-flight access to the instruments, assure a unique and extensive
potential - both for training young instrumentalists and for encouraging and
deploying nascent technologies. Novel instruments covering optical, infrared,
and submillimeter bands can be developed for and tested on SOFIA by their
developers (including apprentices) for their own observations and for those of
guest observers, to validate technologies and maximize observational
effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on
State of the Professio
Altered dynamical integration/segregation balance during anesthesia-induced loss of consciousness
In recent years, brain imaging studies have begun to shed light on the neural correlates of physiologically-reversible altered states of consciousness such as deep sleep, anesthesia, and psychedelic experiences. The emerging consensus is that normal waking consciousness requires the exploration of a dynamical repertoire enabling both global integration i.e., long-distance interactions between brain regions, and segregation, i.e., local processing in functionally specialized clusters. Altered states of consciousness have notably been characterized by a tipping of the integration/segregation balance away from this equilibrium. Historically, functional MRI (fMRI) has been the modality of choice for such investigations. However, fMRI does not enable characterization of the integration/segregation balance at sub-second temporal resolution. Here, we investigated global brain spatiotemporal patterns in electrocorticography (ECoG) data of a monkey (Macaca fuscata) under either ketamine or propofol general anesthesia. We first studied the effects of these anesthetics from the perspective of band-specific synchronization across the entire ECoG array, treating individual channels as oscillators. We further aimed to determine whether synchrony within spatially localized clusters of oscillators was differently affected by the drugs in comparison to synchronization over spatially distributed subsets of ECoG channels, thereby quantifying changes in integration/segregation balance on physiologically-relevant time scales. The findings reflect global brain dynamics characterized by a loss of long-range integration in multiple frequency bands under both ketamine and propofol anesthesia, most pronounced in the beta (13–30 Hz) and low-gamma bands (30–80 Hz), and with strongly preserved local synchrony in all bands
Conflicting Emergences. Weak vs. strong emergence for the modelling of brain function
The concept of "emergence" has become commonplace in the modelling of complex systems, both natural and man-made; a functional property" emerges" from a system when it cannot be readily explained by the properties of the system's sub-units. A bewildering array of adaptive and sophisticated behaviours can be observed from large ensembles of elementary agents such as ant colonies, bird flocks or by the interactions of elementary material units such as molecules or weather elements. Ultimately, emergence has been adopted as the ontological support of a number of attempts to model brain function. This manuscript aims to clarify the ontology of emergence and delve into its many facets, particularly into its "strong" and "weak" versions that underpin two different approaches to the modelling of behaviour. The first group of models is here represented by the "free energy" principle of brain function and the "integrated information theory" of consciousness. The second group is instead represented by computational models such as oscillatory networks that use mathematical scalable representations to generate emergent behaviours and are then able to bridge neurobiology with higher mental functions. Drawing on the epistemological literature, we observe that due to their loose mechanistic links with the underlying biology, models based on strong forms of emergence are at risk of metaphysical implausibility. This, in practical terms, translates into the overdetermination that occurs when the proposed model becomes only one of a large set of possible explanations for the observable phenomena. On the other hand, computational models that start from biologically plausible elementary units, hence are weakly emergent, are not limited by ontological faults and, if scalable and able to realistically simulate the hierarchies of brain output, represent a powerful vehicle for future neuroscientific research programmes.</p
Effects of antidepressant treatment on heart rate variability in major depression: A quantitative review
<p>Abstract</p> <p>Background</p> <p>The literature measuring effects of antidepressant and electroconvulsive therapy (ECT) for major depression on heart rate variability (HRV) in medically well individuals was reviewed.</p> <p>Methods</p> <p>Fourteen studies evaluating HRV were included. Twenty three pre-post or within group comparisons were available. Treatment impact on measures of HRV was pooled over studies. We examined different classes of antidepressants, and for short and long electrocardiogram (ECG) recordings separately.</p> <p>Results</p> <p>Tricyclic antidepressants (TCAs) were associated with declines in most measures of HRV and significant increase in heart rate (HR) in studies with short recording intervals. No significant changes were found for longer recording times.</p> <p>Treatment effects with selective serotonin reuptake inhibitors (SSRIs) were more variable. Short-recording studies revealed a significant decrease in HR and an increase in one HRV measure. In two 24-hour recording studies no significant changes were observed. No relationship between ECT and HRV has been established in the literature. The effects of other drugs are reported.</p> <p>Limitations</p> <p>Few studies measure the effects of treatment of depression on HRV. Existing studies have generally used very small samples, employing a variety of measurements and methodologies.</p> <p>Conclusion</p> <p>We confirm that TCAs are associated with a large decrease in HRV and increase HR. However, data for SSRIs is not clear. Although the effect of SSRIs on HRV is weaker than for TCAs, evidence shows that SSRIs are associated with a small decrease in HR, and an increase in one measure of HRV. The use of TCAs in depression leads to changes in HRV that are associated with increased risk of mortality.</p
Organização e cognição: explorando um 'olhar' da psicologia sobre o os processos organizacionais
- …
