111 research outputs found

    Associations between neuropsychiatric and health status outcomes in individuals with probable mTBI

    Get PDF
    Mild traumatic brain injury (mTBI) is a common occurrence, and may impact distal outcomes in a subgroup of individuals. Improved characterization of health outcomes and identification of factors associated with poor outcomes is needed to better understand the impact of mTBI, particularly in those with co-occurring posttraumatic stress disorder (PTSD). Participants in a data repository of the Injury and Traumatic Stress (INTRuST) Clinical Consortium (n = 625) completed functional disability [FD] and health-related quality of life [HRQOL] questionnaires, and a subset completed a neuropsychological assessment. FD and HRQOL were compared among participants with probable mTBI (mTBI), probable mTBI with PTSD (mTBI/PTSD), and health comparison participants (HC). Associations between symptoms, neuropsychological performance, and health outcomes were examined in those with probable mTBI with and without PTSD (n = 316). Individuals in the mTBI/PTSD group endorsed poorer health outcomes than those in the mTBI group, who endorsed poorer outcomes than those in the HC group. Individuals in either mTBI group performed worse than those in the HC on verbal learning and memory and psychomotor speed. Health outcomes were correlated with mental health and postconcussive symptoms, as well as neuropsychological variables. mTBI may adversely impact self-reported health, with the greatest effect observed in individuals with co-occurring mTBI/PTSD

    Effects of brain tissue oxygen (PbtO2) guided management on patient outcomes following severe traumatic brain injury: A systematic review and meta-analysis.

    Get PDF
    Monitoring and optimisation of brain tissue oxygen tension (PbtO2) has been associated with improved neurological outcome and survival in observational studies of severe traumatic brain injury (TBI). We carried out a systematic review of randomized controlled trials to determine if PbtO2-guided management is associated with differential neurological outcomes, survival, and adverse events. Searches were carried out to 10 February 2022 in Medline (OvidSP), 11 February in EMBASE (OvidSP) and 8 February in Cochrane library. Randomized controlled trials comparing PbtO2 and ICP-guided management to ICP-guided management alone were included. The primary outcome was survival with favourable neurological outcome at 6-months post injury. Data were extracted by two independent authors and GRADE certainty of evidence assessed. There was no difference in the proportion of patients with favourable neurological outcomes with PbtO2-guided management (relative risk [RR] 1.42, 95% CI 0.97 to 2.08; p = 0.07; I2 = 0%, very low certainty evidence) but PbtO2-guided management was associated with reduced mortality (RR 0.54, 95% CI 0.31 to 0.93; p = 0.03; I2 = 42%; very low certainty evidence) and ICP (mean difference (MD) - 4.62, 95% CI - 8.27 to - 0.98; p = 0.01; I2 = 63%; very low certainty evidence). There was no significant difference in the risk of adverse respiratory or cardiovascular events. PbtO2-guided management in addition to ICP-based care was not significantly associated with increased favourable neurological outcomes, but was associated with increased survival and reduced ICP, with no difference in respiratory or cardiovascular adverse events. However, based on GRADE criteria, the certainty of evidence provided by this meta-analysis was consistently very low. MESH: Brain Ischemia; Intensive Care; Glasgow Outcome Scale; Randomized Controlled Trial; Craniocerebral Trauma

    A Comprehensive Perspective on Intracranial Pressure Monitoring and Individualized Management in Neurocritical Care: Results of a Survey with Global Experts

    Get PDF
    BACKGROUND: Numerous trials have addressed intracranial pressure (ICP) management in neurocritical care. However, identifying its harmful thresholds and controlling ICP remain challenging in terms of improving outcomes. Evidence suggests that an individualized approach is necessary for establishing tolerance limits for ICP, incorporating factors such as ICP waveform (ICPW) or pulse morphology along with additional data provided by other invasive (e.g., brain oximetry) and noninvasive monitoring (NIM) methods (e.g., transcranial Doppler, optic nerve sheath diameter ultrasound, and pupillometry). This study aims to assess current ICP monitoring practices among experienced clinicians and explore whether guidelines should incorporate ancillary parameters from NIM and ICPW in future updates. METHODS: We conducted a survey among experienced professionals involved in researching and managing patients with severe injury across low-middle-income countries (LMICs) and high-income countries (HICs). We sought their insights on ICP monitoring, particularly focusing on the impact of NIM and ICPW in various clinical scenarios. RESULTS: From October to December 2023, 109 professionals from the Americas and Europe participated in the survey, evenly distributed between LMIC and HIC. When ICP ranged from 22 to 25 mm Hg, 62.3% of respondents were open to considering additional information, such as ICPW and other monitoring techniques, before adjusting therapy intensity levels. Moreover, 77% of respondents were inclined to reassess patients with ICP in the 18-22 mm Hg range, potentially escalating therapy intensity levels with the support of ICPW and NIM. Differences emerged between LMIC and HIC participants, with more LMIC respondents preferring arterial blood pressure transducer leveling at the heart and endorsing the use of NIM techniques and ICPW as ancillary information. CONCLUSIONS: Experienced clinicians tend to personalize ICP management, emphasizing the importance of considering various monitoring techniques. ICPW and noninvasive techniques, particularly in LMIC settings, warrant further exploration and could potentially enhance individualized patient care. The study suggests updating guidelines to include these additional components for a more personalized approach to ICP management

    Age-dependent white matter disruptions after military traumatic brain injury: Multivariate analysis results from ENIGMA brain injury

    Get PDF
    Mild Traumatic brain injury (mTBI) is a signature wound in military personnel, and repetitive mTBI has been linked to age-related neurogenerative disorders that affect white matter (WM) in the brain. However, findings of injury to specific WM tracts have been variable and inconsistent. This may be due to the heterogeneity of mechanisms, etiology, and comorbid disorders related to mTBI. Non-negative matrix factorization (NMF) is a data-driven approach that detects covarying patterns (components) within high-dimensional data. We applied NMF to diffusion imaging data from military Veterans with and without a self-reported TBI history. NMF identified 12 independent components derived from fractional anisotropy (FA) in a large dataset (n = 1,475) gathered through the ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) Military Brain Injury working group. Regressions were used to examine TBI- and mTBI-related associations in NMF-derived components while adjusting for age, sex, post-traumatic stress disorder, depression, and data acquisition site/scanner. We found significantly stronger age-dependent effects of lower FA in Veterans with TBI than Veterans without in four components (q \u3c 0.05), which are spatially unconstrained by traditionally defined WM tracts. One component, occupying the most peripheral location, exhibited significantly stronger age-dependent differences in Veterans with mTBI. We found NMF to be powerful and effective in detecting covarying patterns of FA associated with mTBI by applying standard parametric regression modeling. Our results highlight patterns of WM alteration that are differentially affected by TBI and mTBI in younger compared to older military Veterans

    Outcome from traumatic brain injury

    No full text

    Coma and Low Arousal States

    No full text

    How much oxygen for the injured brain – can invasive parenchymal catheters help?

    Full text link
    corecore