444 research outputs found
Estimates of global ocean cooling at the Last Glacial Maximum based on sea-surface temperature and oxygen-isotope reconstructions
Modeling the Arctic coloured dissolved organic matter (CDOM) and phytoplankton diversity in/with support to satellite retrievals
Chain governance, sector policies and economic sustainability in cocoa; A comparative analysis of Ghana, Côte d'Ivoire, and Ecuador
The Infrared Array Camera (IRAC) for the Spitzer Space Telescope
The Infrared Array Camera (IRAC) is one of three focal plane instruments in
the Spitzer Space Telescope. IRAC is a four-channel camera that obtains
simultaneous broad-band images at 3.6, 4.5, 5.8, and 8.0 microns. Two nearly
adjacent 5.2x5.2 arcmin fields of view in the focal plane are viewed by the
four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four
detector arrays in the camera are 256x256 pixels in size, with the two shorter
wavelength channels using InSb and the two longer wavelength channels using
Si:As IBC detectors. IRAC is a powerful survey instrument because of its high
sensitivity, large field of view, and four-color imaging. This paper summarizes
the in-flight scientific, technical, and operational performance of IRAC.Comment: 7 pages, 3 figures. Accepted for publication in the ApJS. A higher
resolution version is at http://cfa-www.harvard.edu/irac/publication
Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates
Submarine melting of Greenlandic tidewater glacier termini is proposed as a possiblemechanism driving their recent thinning and retreat. We use a general circulation model, MITgcm, tosimulate water circulation driven by subglacial discharge at the terminus of an idealized tidewater glacier.We vary the spatial distribution of subglacial discharge emerging at the grounding line of the glacier andexamine the effect on submarine melt volume and distribution. We find that subglacial hydrology exerts animportant control on submarine melting; under certain conditions a distributed system can induce a factor5 more melt than a channelized system, with plumes from a single channel inducing melt over only alocalized area. Subglacial hydrology also controls the spatial distribution of melt, which has the potential tocontrol terminus morphology and calving style. Our results highlight the need to constrain near-terminussubglacial hydrology at tidewater glaciers if we are to represent ocean forcing accurately
Recombination dynamics of a human Y-chromosomal palindrome:rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions
The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4) events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages
Recommended from our members
Advancing polar prediction capabilities on daily to seasonal time scales
It is argued that existing polar prediction systems do not yet meet users’ needs; and possible ways forward in advancing prediction capacity in polar regions and beyond are outlined.
The polar regions have been attracting more and more attention in recent years, fuelled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with less in situ observations, and with numerous local physical processes that are less well-represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere-sea ice-ocean models, even for short-term prediction; and insight into polar-lower latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting community will work together with stakeholders in a period of intensive observing, modelling, prediction, verification, user-engagement and educational activities
Amplified Arctic Surface Warming and Sea Ice Loss Due to Phytoplankton and Colored Dissolved Material
Optically active water constituents attenuate solar radiation and hence affect the vertical distribution of energy in the upper ocean. To understand their implications, we operate an ocean biogeochemical model coupled to a general circulation model with sea ice. Incorporating the effect of phytoplankton and colored dissolved organic matter (CDOM) on light attenuation in the model increases the sea surface temperature in summer and decreases sea ice concentration in the Arctic Ocean. Locally, the sea ice season is reduced by up to one month. CDOM drives a significant part of these changes, suggesting that an increase of this material will amplify the observed Arctic surface warming through its direct thermal effect. Indirectly, changing advective processes in the Nordic Seas may further intensify this effect. Our results emphasize the phytoplankton and CDOM feedbacks on the Arctic ocean and sea ice system and underline the need to consider these effects in future modeling studies to enhance their plausibility
- …
