496 research outputs found
Estimates of global ocean cooling at the Last Glacial Maximum based on sea-surface temperature and oxygen-isotope reconstructions
Visual pathways from the perspective of cost functions and multi-task deep neural networks
Vision research has been shaped by the seminal insight that we can understand
the higher-tier visual cortex from the perspective of multiple functional
pathways with different goals. In this paper, we try to give a computational
account of the functional organization of this system by reasoning from the
perspective of multi-task deep neural networks. Machine learning has shown that
tasks become easier to solve when they are decomposed into subtasks with their
own cost function. We hypothesize that the visual system optimizes multiple
cost functions of unrelated tasks and this causes the emergence of a ventral
pathway dedicated to vision for perception, and a dorsal pathway dedicated to
vision for action. To evaluate the functional organization in multi-task deep
neural networks, we propose a method that measures the contribution of a unit
towards each task, applying it to two networks that have been trained on either
two related or two unrelated tasks, using an identical stimulus set. Results
show that the network trained on the unrelated tasks shows a decreasing degree
of feature representation sharing towards higher-tier layers while the network
trained on related tasks uniformly shows high degree of sharing. We conjecture
that the method we propose can be used to analyze the anatomical and functional
organization of the visual system and beyond. We predict that the degree to
which tasks are related is a good descriptor of the degree to which they share
downstream cortical-units.Comment: 16 pages, 5 figure
On the formulation of sea-ice models. Part 2: Lessons from multi-year adjoint sea ice export sensitivities through the Canadian Arctic Archipelago.
Modification of spintronic terahertz emitter performance through defect engineering
Spintronic ferromagnetic/non-magnetic heterostructures are novel sources for
the generation of THz radiation based on spin-to-charge conversion in the
layers. The key technological and scientific challenge of THz spintronic
emitters is to increase their intensity and frequency bandwidth. Our work
reveals the factors to engineer spintronic Terahertz generation by introducing
the scattering lifetime and the interface transmission for spin polarized,
non-equilibrium electrons. We clarify the influence of the electron-defect
scattering lifetime on the spectral shape and the interface transmission on the
THz amplitude, and how this is linked to structural defects of bilayer
emitters. The results of our study define a roadmap of the properties of
emitted as well as detected THz-pulse shapes and spectra that is essential for
future applications of metallic spintronic THz emitters.Comment: 33 pages, 13 figure
The Infrared Array Camera (IRAC) for the Spitzer Space Telescope
The Infrared Array Camera (IRAC) is one of three focal plane instruments in
the Spitzer Space Telescope. IRAC is a four-channel camera that obtains
simultaneous broad-band images at 3.6, 4.5, 5.8, and 8.0 microns. Two nearly
adjacent 5.2x5.2 arcmin fields of view in the focal plane are viewed by the
four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four
detector arrays in the camera are 256x256 pixels in size, with the two shorter
wavelength channels using InSb and the two longer wavelength channels using
Si:As IBC detectors. IRAC is a powerful survey instrument because of its high
sensitivity, large field of view, and four-color imaging. This paper summarizes
the in-flight scientific, technical, and operational performance of IRAC.Comment: 7 pages, 3 figures. Accepted for publication in the ApJS. A higher
resolution version is at http://cfa-www.harvard.edu/irac/publication
Chain governance, sector policies and economic sustainability in cocoa; A comparative analysis of Ghana, Côte d'Ivoire, and Ecuador
- …
