174 research outputs found

    Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy

    Get PDF
    Alternative splicing (AS) is a mechanism that generates translational diversity within a genome. Equally important is the dynamic adaptability of the splicing machinery, which can give preference to one isoform over others encoded by a single gene. These isoform preferences change in response to the cell’s state and function. Particularly significant is the impact of physiological alternative splicing in T lymphocytes, where specific isoforms can enhance or reduce the cells’ reactivity to stimuli. This process makes splicing isoforms defining features of cell states, exemplified by CD45 splice isoforms, which characterize the transition from naïve to memory states. Two developments have accelerated the use of AS dynamics for therapeutic interventions: advancements in long-read RNA sequencing and progress in nucleic acid chemical modifications. Improved oligonucleotide stability has enabled their use in directing splicing to specific sites or modifying sequences to enhance or silence particular splicing events. This review highlights immune regulatory splicing patterns with potential significance for enhancing anticancer immunotherapy

    A New Role of Vemurafenib as a Neoadjuvant Treatment of Axillary and Brain Melanoma Metastases

    Get PDF
    Vemurafenib is approved by the FDA for the management of unresectable or metastatic melanoma. However, its role as a neoadjuvant therapy has not been determined. We present the first documented case in which vemurafenib induced complete tumor necrosis of both lymph node and brain metastases within one month or less, an outcome that indicated that the patient was a good candidate for excisional surgery

    Serum CEACAM1 Correlates with Disease Progression and Survival in Malignant Melanoma Patients

    Get PDF
    The search for melanoma biomarkers is crucial, as the incidence of melanoma continues to rise. We have previously demonstrated that serum CEACAM1 (sCEACAM1) is secreted from melanoma cells and correlates with disease progression in metastatic melanoma patients. Here, we have used a different cohort of melanoma patients with regional or metastatic disease (N = 49), treated with autologous vaccination. By monitoring sCEACAM1 in serum samples obtained prior to and after vaccination, we show that sCEACAM1 correlates with disease state, overall survival, and S100B. The trend of change in sCEACAM1 following vaccination (increase/decrease) inversely correlates with overall survival. DTH skin test is used to evaluate patients' anti-melanoma immune response and to predict response to vaccination. Importantly, sCEACAM1 had a stronger prognostic value than that of DTH, and when sCEACAM1 decreased following treatment, this was the dominant predictor of increased survival. Collectively, our results point out the relevance of sCEACAM1 in monitoring melanoma patients

    Ocular Melanoma Metastasizing to Intra-Abdominal Lymph Nodes

    Get PDF
    Background. Visceral metastatic spread of ocular melanoma most commonly occurs via hematogenous route to the liver. Lymphatic spread of ocular melanoma into abdominal lymph nodes has not been reported previously. Case Presentation. A 47-year-old man with a history of ocular melanoma presented with a soft tissue mass on CT scan. The mass encased the portal structures of the hepaticoduodenal ligament. Image-guided biopsy revealed it to be a metastatic melanoma to lymph nodes. The patient underwent surgery with the intent to prolong disease-free survival. On final pathological examination, two lymph nodes were found harboring metastatic melanoma. Conclusion. Extrahepatic lymphatic intra-abdominal spread of ocular melanoma is not impossible. Since this mode of spread is rare, the oncologic significance of surgical resection of isolated intra-abdominal nodal with metastatic ocular melanoma is difficult to determine at the present time

    The future of affordable cancer immunotherapy

    Get PDF
    The treatment of cancer was revolutionized within the last two decades by utilizing the mechanism of the immune system against malignant tissue in so-called cancer immunotherapy. Two main developments boosted cancer immunotherapy: 1) the use of checkpoint inhibitors, which are characterized by a relatively high response rate mainly in solid tumors; however, at the cost of serious side effects, and 2) the use of chimeric antigen receptor (CAR)-T cells, which were shown to be very efficient in the treatment of hematologic malignancies, but failed to show high clinical effectiveness in solid tumors until now. In addition, active immunization against individual tumors is emerging, and the first products have reached clinical approval. These new treatment options are very cost-intensive and are not financially compensated by health insurance in many countries. Hence, strategies must be developed to make cancer immunotherapy affordable and to improve the cost-benefit ratio. In this review, we discuss the following strategies: 1) to leverage the antigenicity of “cold tumors” with affordable reagents, 2) to use microbiome-based products as markers or therapeutics, 3) to apply measures that make adoptive cell therapy (ACT) cheaper, e.g., the use of off-the-shelf products, 4) to use immunotherapies that offer cheaper platforms, such as RNA- or peptide-based vaccines and vaccines that use shared or common antigens instead of highly personal antigens, 5) to use a small set of predictive biomarkers instead of the “sequence everything” approach, and 6) to explore affordable immunohistochemistry markers that may direct individual therapies.</p

    The future of affordable cancer immunotherapy

    Get PDF
    The treatment of cancer was revolutionized within the last two decades by utilizing the mechanism of the immune system against malignant tissue in so-called cancer immunotherapy. Two main developments boosted cancer immunotherapy: 1) the use of checkpoint inhibitors, which are characterized by a relatively high response rate mainly in solid tumors; however, at the cost of serious side effects, and 2) the use of chimeric antigen receptor (CAR)-T cells, which were shown to be very efficient in the treatment of hematologic malignancies, but failed to show high clinical effectiveness in solid tumors until now. In addition, active immunization against individual tumors is emerging, and the first products have reached clinical approval. These new treatment options are very cost-intensive and are not financially compensated by health insurance in many countries. Hence, strategies must be developed to make cancer immunotherapy affordable and to improve the cost-benefit ratio. In this review, we discuss the following strategies: 1) to leverage the antigenicity of “cold tumors” with affordable reagents, 2) to use microbiome-based products as markers or therapeutics, 3) to apply measures that make adoptive cell therapy (ACT) cheaper, e.g., the use of off-the-shelf products, 4) to use immunotherapies that offer cheaper platforms, such as RNA- or peptide-based vaccines and vaccines that use shared or common antigens instead of highly personal antigens, 5) to use a small set of predictive biomarkers instead of the “sequence everything” approach, and 6) to explore affordable immunohistochemistry markers that may direct individual therapies

    Biological Insights From Plasma Proteomics of Non-small Cell Lung Cancer Patients Treated With Immunotherapy

    Get PDF
    INTRODUCTION: Immune checkpoint inhibitors have made a paradigm shift in the treatment of non-small cell lung cancer (NSCLC). However, clinical response varies widely and robust predictive biomarkers for patient stratification are lacking. Here, we characterize early on-treatment proteomic changes in blood plasma to gain a better understanding of treatment response and resistance. METHODS: Pre-treatment (T0) and on-treatment (T1) plasma samples were collected from 225 NSCLC patients receiving PD-1/PD-L1 inhibitor-based regimens. Plasma was profiled using aptamer-based technology to quantify approximately 7000 plasma proteins per sample. Proteins displaying significant fold changes (T1:T0) were analyzed further to identify associations with clinical outcomes using clinical benefit and overall survival as endpoints. Bioinformatic analyses of upregulated proteins were performed to determine potential cell origins and enriched biological processes. RESULTS: The levels of 142 proteins were significantly increased in the plasma of NSCLC patients following ICI-based treatments. Soluble PD-1 exhibited the highest increase, with a positive correlation to tumor PD-L1 status, and, in the ICI monotherapy dataset, an association with improved overall survival. Bioinformatic analysis of the ICI monotherapy dataset revealed a set of 30 upregulated proteins that formed a single, highly interconnected network, including CD8A connected to ten other proteins, suggestive of T cell activation during ICI treatment. Notably, the T cell-related network was detected regardless of clinical benefit. Lastly, circulating proteins of alveolar origin were identified as potential biomarkers of limited clinical benefit, possibly due to a link with cellular stress and lung damage. CONCLUSIONS: Our study provides insights into the biological processes activated during ICI-based therapy, highlighting the potential of plasma proteomics to identify mechanisms of therapy resistance and biomarkers for outcome

    Long-term real-world experience with ipilimumab and non-ipilimumab therapies in advanced melanoma: the IMAGE study.

    Get PDF
    Funder: This work was supported by Bristol Myers Squibb (no grant number is applicable).BACKGROUND: Ipilimumab has shown long-term overall survival (OS) in patients with advanced melanoma in clinical trials, but robust real-world evidence is lacking. We present long-term outcomes from the IMAGE study (NCT01511913) in patients receiving ipilimumab and/or non-ipilimumab (any approved treatment other than ipilimumab) systemic therapies. METHODS: IMAGE was a multinational, prospective, observational study assessing adult patients with advanced melanoma treated with ipilimumab or non-ipilimumab systemic therapies between June 2012 and March 2015 with ≥3 years of follow-up. Adjusted OS curves based on multivariate Cox regression models included covariate effects. Safety and patient-reported outcomes were assessed. RESULTS: Among 1356 patients, 1094 (81%) received ipilimumab and 262 (19%) received non-ipilimumab index therapy (systemic therapy [chemotherapy, anti-programmed death 1 antibodies, or BRAF ± MEK inhibitors], radiotherapy, and radiosurgery). In the overall population, median age was 64 years, 60% were male, 78% were from Europe, and 78% had received previous treatment for advanced melanoma. In the ipilimumab-treated cohort, 780 (71%) patients did not receive subsequent therapy (IPI-noOther) and 314 (29%) received subsequent non-ipilimumab therapy (IPI-Other) on study. In the non-ipilimumab-treated cohort, 205 (78%) patients remained on or received other subsequent non-ipilimumab therapy (Other-Other) and 57 (22%) received subsequent ipilimumab therapy (Other-IPI) on study. Among 1151 patients who received ipilimumab at any time during the study (IPI-noOther, IPI-Other, and Other-IPI), 296 (26%) reported CTCAE grade ≥ 3 treatment-related adverse events, most occurring in year 1. Ipilimumab-treated and non-ipilimumab-treated patients who switched therapy (IPI-Other and Other-IPI) had longer OS than those who did not switch (IPI-noOther and Other-Other). Patients with prior therapy who did not switch therapy (IPI-noOther and Other-Other) showed similar OS. In treatment-naive patients, those in the IPI-noOther group tended to have longer OS than those in the Other-Other group. Patient-reported outcomes were similar between treatment cohorts. CONCLUSIONS: With long-term follow-up (≥ 3 years), safety and OS in this real-world population of patients treated with ipilimumab 3 mg/kg were consistent with those reported in clinical trials. Patient-reported quality of life was maintained over the study period. OS analysis across both pretreated and treatment-naive patients suggested a beneficial role of ipilimumab early in treatment. TRIAL REGISTRATION: ClinicalTrials.gov , NCT01511913. Registered January 19, 2012 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT01511913

    Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma

    Get PDF
    Background Ipilimumab monotherapy (at a dose of 3 mg per kilogram of body weight), as compared with glycoprotein 100, improved overall survival in a phase 3 study involving patients with previously treated metastatic melanoma. We conducted a phase 3 study of ipilimumab (10 mg per kilogram) plus dacarbazine in patients with previously untreated metastatic melanoma. Methods We randomly assigned 502 patients with previously untreated metastatic melanoma, in a 1:1 ratio, to ipilimumab (10 mg per kilogram) plus dacarbazine (850 mg per square meter of body-surface area) or dacarbazine (850 mg per square meter) plus placebo, given at weeks 1, 4, 7, and 10, followed by dacarbazine alone every 3 weeks through week 22. Patients with stable disease or an objective response and no doselimiting toxic effects received ipilimumab or placebo every 12 weeks thereafter as maintenance therapy. The primary end point was overall survival. Results Overall survival was significantly longer in the group receiving ipilimumab plus dacarbazine than in the group receiving dacarbazine plus placebo (11.2 months vs. 9.1 months, with higher survival rates in the ipilimumab–dacarbazine group at 1 year (47.3% vs. 36.3%), 2 years (28.5% vs. 17.9%), and 3 years (20.8% vs. 12.2%) (hazard ratio for death, 0.72; P<0.001). Grade 3 or 4 adverse events occurred in 56.3% of patients treated with ipilimumab plus dacarbazine, as compared with 27.5% treated with dacarbazine and placebo (P<0.001). No drug-related deaths or gastrointestinal perforations occurred in the ipilimumab–dacarbazine group. Conclusions Ipilimumab (at a dose of 10 mg per kilogram) in combination with dacarbazine, as compared with dacarbazine plus placebo, improved overall survival in patients with previously untreated metastatic melanoma. The types of adverse events were consistent with those seen in prior studies of ipilimumab; however, the rates of elevated liver-function values were higher and the rates of gastrointestinal events were lower than expected on the basis of prior studies. (Funded by Bristol-Myers Squibb; ClinicalTrials.gov number, NCT00324155.

    Functional and regulatory profiling of energy metabolism in fission yeast

    Get PDF
    Background: The control of energy metabolism is fundamental for cell growth and function and anomalies in it are implicated in complex diseases and ageing. Metabolism in yeast cells can be manipulated by supplying different carbon sources: yeast grown on glucose rapidly proliferates by fermentation, analogous to tumour cells growing by aerobic glycolysis, whereas on non-fermentable carbon sources metabolism shifts towards respiration. Results: We screened deletion libraries of fission yeast to identify over 200 genes required for respiratory growth. Growth media and auxotrophic mutants strongly influenced respiratory metabolism. Most genes uncovered in the mutant screens have not been implicated in respiration in budding yeast. We applied gene-expression profiling approaches to compare steady-state fermentative and respiratory growth and to analyse the dynamic adaptation to respiratory growth. The transcript levels of most genes functioning in energy metabolism pathways are coherently tuned, reflecting anticipated differences in metabolic flows between fermenting and respiring cells. We show that acetyl-CoA synthase, rather than citrate lyase, is essential for acetyl-CoA synthesis in fission yeast. We also investigated the transcriptional response to mitochondrial damage by genetic or chemical perturbations, defining a retrograde response that involves the concerted regulation of distinct groups of nuclear genes that may avert harm from mitochondrial malfunction. Conclusions: This study provides a rich framework of the genetic and regulatory basis of energy metabolism in fission yeast and beyond, and it pinpoints weaknesses of commonly used auxotroph mutants for investigating metabolism. As a model for cellular energy regulation, fission yeast provides an attractive and complementary system to budding yeast
    corecore