134 research outputs found
Background Simulations of the Wide Field Imager of the ATHENA X-Ray Observatory
The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray
observatory with a focal length of 11.5m. ATHENA aims to perform pointed
observations in an energy range from 0.1 keV to 15 keV with high sensitivity.
For high spatial and timing resolution imaging and spectroscopic observations
the 640x640 pixel^2 large DePFET-technology based Wide field Imager (WFI) focal
plane detector, providing a field of view of 18 arcsec will be the main
detector. Based on the actual mechanics, thermal and shielding design we
present estimates for the WFI cosmic ray induced background obtained by the use
of Monte-Carlo simulations and possible background reduction measures.Comment: IEEE NSS MIC Conference 2011, Valencia, Spai
An advanced smart counting mode for pixelated direct electron detectors based on semiconductors
Spectroscopic-Grade X-Ray Imaging up to 100-kHz Frame Rate With Controlled-Drift Detectors
Abstract-Controlled-drift detectors are fully depleted silicon detectors for X-ray imaging that combine good position resolution with very fast frame readout. The basic feature of the controlled-drift detector is the transport of the charge packets stored in each pixel column to the output electrode by means of a uniform drift field. The drift time of the charge packet identifies the pixel of incidence. Images of an X-ray source obtained with the controlled-drift detector up to 100-kHz frame rate are presented and discussed. The achievable energy resolution as a function of the operating temperature and frame rate is analyzed. Index Terms-Controlled-drift detector, fast readout, X-ray imaging
4D STEM and EELS Acquired Simultaneously with a Fast Pixelated Direct Detector with Center Hole
Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device
Recommended from our members
CAMP@FLASH: an end-station for imaging, electron- and ion-spectroscopy, and pump–probe experiments at the FLASH free-electron laser
The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump–probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning
- …
