17 research outputs found
Experiences with a preliminary NICE/SPAR structural analysis system
Development of a new structural analysis system based on the original SPAR finite element code and the NICE system is described. The system is denoted NICE/SPAR. NICE was designed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Engineering Information Systems, Inc. It includes many complementary structural analysis and utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring new computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with the SPAR computational modules
CSM Testbed Development and Large-Scale Structural Applications
A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized
Introduction to the computational structural mechanics testbed
The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules
Technology integration box beam failure study
Composite structures have the potential to be cost-effective, structurally efficient primary aircraft structures. The Advanced Composites Technology (ACT) Program has the goal to develop the technology to exploit this potential for heavily loaded aircraft structures. As part of the ACT Program, Lockheed Aeronautical Systems Company completed the design and fabrication of the Technology Integration Box Beam (TIBB). The TIBB is an advanced composite prototype structure for the center wing section of the C-130 aircraft. Lockheed subjected the TIBB to downbending, upbending, torsion and combined upbending and torsion load conditions to verify the design. The TIBB failed at 83 percent of design ultimate load for the combined upbending and torsion load condition. The objective of this paper is to describe the mechanisms that led to the failure of the TIBB. The results of a comprehensive analytical and experimental study are presented. Analytical results include strain and deflection results from both a global analysis of the TIBB and a local analysis of the failure region. These analytical results are validated by experimental results from the TIBB tests. The analytical and experimental results from the TIBB tests are used to determine a sequence of events that resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Analytical and experimental results are also presented for a stiffener runout specimen that was used to simulate the TIBB failure mechanisms
Fuel Cycle Costs for a Plutonium Recycle System
The costs of the chemical and metallurgical steps in the fuel cycle for large desalination reactors are estimated. Both capital and operating costs are presented at varying plant capacities for a Zircaloy-clad fuel element containing depleted uranium and recycled plutonium as the oxides. UO/sup 2/-0.5% PuO/sub 2/. The chemical steps are reported at throughputs of 1, 10, and 30 short tons of uranium per day; and the metallurgical or fabrication step at throughputs of 1, 3, 5, and 10 tons per day, as specified by the Office of Science and Technology. The total estimated cost of all the chemical and metallurgical steps drops from .17 to .68 per kilogram of uranium as the cycle throughput is increased from 1 to 10 tons of uranium per day. All steps decrease in cost as plant capacity is increased, with the most impressive decrease in the irradiated assembly processing step, which decreases from .19 to 10 to 07 per kilogram of uranium as throughput is changed from 1 to 10 to 30 tons of uranium per day. The contained data in conjunction with previous studies of a natural uranium fuel cycle and results of a current reactor optimization study will yield complete fuel cycle costs and plutonium value in recycle. (auth
Aiaa-2002-1743 1
A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort
Recommended from our members
Oak Ridge National Laboratory Reports
Report containing the estimated costs of the chemical and metallurgical steps in plutonium recycling for large desalination reactors
Facing the Challenges of Chronic Pruritus: A Report From a Multi-disciplinary Medical Itch Centre in Germany
The complex nature and difficult-to-establish aetiology of chronic pruritus (CP) makes it challenging to provide medical care for patients with CP. This challenge can only be met with a multidisciplinary approach. The first multidisciplinary Itch Centre in Germany was established at the University of Münster in 2002 to meet the needs of this patient population. More than 2,500 outpatients and 400 inpatients are diagnosed and receive treatment each year. To ensure evidence-based medical care, an electronic system for medical documentation and patient-reported outcomes was established. Automated data transfer to a research database enables comprehensive data analysis. Our translational research has characterized peripheral and central itch mechanisms, provided novel clustering of CP patients, and identified novel target-specific therapies (e.g. neurokinin 1 receptor-antagonist). The multidisciplinary approach, combined with basic, clinical and translational research, enables comprehensive medical care of patients as well as implementation of high-quality experimental and clinical studies
