2,879 research outputs found

    Minimum fuel attitude control of a nonlinear satellite system with bounded control by a method based on linear programming

    Get PDF
    Optimal control method based on linear programming for satellite fuel consumptio

    Minimum time control of a nonlinear system

    Get PDF
    Time-optimal control problem studied for system representing second-order nonlinear differential equatio

    Role of Galaxy Mergers in Cosmic Star Formation History

    Get PDF
    We present a morphology study of intermediate-redshift (0.2<z<1.2) luminous infrared galaxies (LIRGs) and general field galaxies in the GOODS fields using a revised asymmetry measurement method optimized for deep fields. By taking careful account of the importance of the underlying sky-background structures, our new method does not suffer from systematic bias and offers small uncertainties. By redshifting local LIRGs and low-redshift GOODS galaxies to different higher redshifts, we have found that the redshift dependence of the galaxy asymmetry due to surface-brightness dimming is a function of the asymmetry itself, with larger corrections for more asymmetric objects. By applying redshift-, IR-luminosity- and optical-brightness-dependent asymmetry corrections, we have found that intermediate-redshift LIRGs generally show highly asymmetric morphologies, with implied merger fractions ~50% up to z=1.2, although they are slightly more symmetric than local LIRGs. For general field galaxies, we find an almost constant relatively high merger fraction (20-30%). The B-band LFs of galaxy mergers are derived at different redshifts up to z=1.2 and confirm the weak evolution of the merger fraction after breaking the luminosity-density degeneracy. The IR luminosity functions (LFs) of galaxy mergers are also derived, indicating a larger merger fraction at higher IR luminosity. The integral of the merger IR LFs indicates a dramatic evolution of the merger-induced IR energy density [(1+z)^(5-6)}], and that galaxy mergers start to dominate the cosmic IR energy density at z>~1.Comment: Accepted for publication in ApJ, 25 pages, 23 figures (2 colors). The high-resolution pdf is at http://cztsy.as.arizona.edu/~yong/Research/SHI_MERGER.pd

    Quantified HI Morphology V: HI Disks in the Virgo Cluster

    Get PDF
    We explore the quantified morphology of atomic hydrogen (HI) disks in the Virgo cluster. These galaxies display a wealth of phenomena in their Hi morphology, e.g., tails, truncation and warps. These morphological disturbances are related to the ram-pressure stripping and tidal interaction that galaxies undergo in this dense cluster environment. To quantify the morphological transformation of the HI disks, we compute the morphological parameters of CAS, Gini, and M20 and our own GM for 51 galaxies in 48 HI column density maps from the VIVA project. Some morphological phenomena can be identified in this space of relatively low resolution HI data. Truncation of the HI disk can be cleanly identified via the Concentration parameter (C<1) and Concentration can also be used to identify HI deficient disks (1<C<5). Tidal interaction is typically identified using combinations of these morphological parameters, applied to (optical) images of galaxies. We find that some selection criteria (Gini-M20, Asymmetry, and a modified Concentration-M20) are still applicable for the coarse (~15" FWHM) VIVA HI data. The phenomena of tidal tails can be reasonably well identified using the Gini-M20 criterion (60% of galaxies with tails identified but with as many contaminants). Ram-pressure does move HI disks into and out of most of our interaction criteria: the ram-pressure sequence identified by Vollmer et al. (2009) tracks into and out of some of these criteria (Asymmetry based and the Gini-M20 selections, but not the Concentration-M20 or the GM based ones). Therefore, future searches for interaction using HI morphologies should take ram-pressure into account as a mechanism to disturb HI disks enough to make them appear as gravitationally interacting. One mechanism would be to remove all the HI deficient (C<5) disks from the sample, as these have undergone more than one HI removal mechanism.Comment: 10 pages, 3 figures, accepted by MNRAS, appendixes not include

    Quantified HI Morphology I: Multi-Wavelengths Analysis of the THINGS Galaxies

    Get PDF
    Galaxy evolution is driven to a large extent by interactions and mergers with other galaxies and the gas in galaxies is extremely sensitive to the interactions. One method to measure such interactions uses the quantified morphology of galaxy images. Well-established parameters are Concentration, Asymmetry, Smoothness, Gini, and M20 of a galaxy image. Thus far, the application of this technique has mostly been restricted to restframe ultra-violet and optical images. However, with the new radio observatories being commissioned (MeerKAT, ASKAP, EVLA, WSRT/APERTIF, and ultimately SKA), a new window on the neutral atomic hydrogen gas (HI) morphology of a large numbers of galaxies will open up. The quantified morphology of gas disks of spirals can be an alternative indicator of the level and frequency of interaction. The HI in galaxies is typically spatially more extended and more sensitive to low-mass or weak interactions. In this paper, we explore six morphological parameters calculated over the extent of the stellar (optical) disk and the extent of the gas disk for a range of wavelengths spanning UV, Optical, Near- and Far-Infrared and 21 cm (HI) of 28 galaxies from The HI Nearby Galaxy Survey (THINGS). Though the THINGS sample is small and contains only a single ongoing interaction, it spans both non-interacting and post-interacting galaxies with a wealth of multi-wavelength data. We find that the choice of area for the computation of the morphological parameters is less of an issue than the wavelength at which they are measured. The signal of interaction is as good in the HI as in any of the other wavelengths in which morphology has been used to trace the interaction rate to date, mostly star-formation dominated ones (near- and far-ultraviolet). The Asymmetry and M20 parameters are the ones which show the most promise as tracers of interaction in 21 cm line observations.Comment: 16 pages, 11 figure, table 1, accepted by MNRAS, appendix not include

    Quantified HI Morphology III: Merger Visibility Times from HI in Galaxy Simulations

    Get PDF
    Major mergers of disk galaxies are thought to be a substantial driver in galaxy evolution. To trace the fraction and the rate galaxies are in mergers over cosmic times, several observational techniques, including morphological selection criteria, have been developed over the last decade. We apply this morphological selection of mergers to 21 cm radio emission line (HI) column density images of spiral galaxies in nearby surveys. In this paper, we investigate how long a 1:1 merger is visible in HI from N-body simulations. We evaluate the merger visibility times for selection criteria based on four parameters: Concentration, Asymmetry, M20, and the Gini parameter of second order moment of the flux distribution (GM). Of three selection criteria used in the literature, one based on Concentration and M20 works well for the HI perspective with a merger time scale of 0.4 Gyr. Of the three selection criteria defined in our previous paper, the GM performs well and cleanly selects mergers for 0.69 Gyr. The other two criteria (A-M20 and C-M20), select isolated disks as well, but perform best for face-on, gas-rich disks (T(merger) ~ 1 Gyr). The different visibility scales can be combined with the selected fractions of galaxies in any large HI survey to obtain merger rates in the nearby Universe. All-sky surveys such as WALLABY with ASKAP and the Medium Deep Survey with the APETIF instrument on Westerbork are set to revolutionize our perspective on neutral hydrogen and will provide an accurate measure of the merger fraction and rate of the present epoch.Comment: 12 pages, 6 figures, 4 tables, accepted by MNRAS, appendix not include

    AEGIS: The Nature of the Host Galaxies of Low-ionization Outflows at z < 0.6

    Full text link
    We report on a S/N-limited search for low-ionization gas outflows in the spectra of the 0.11 < z < 0.54 objects in the EGS portion of the DEEP2 survey. Doppler shifts from the host galaxy redshifts are systematically searched for in the Na I 5890,96 doublet (Na D). Although the spectral resolution and S/N limit us to study the interstellar gas kinematics from fitting a single doublet component to each observed Na D profile, the typical outflow often seen in local luminous-infrared galaxies (LIRGs) should be detected at >~ 6 sigma in absorption equivalent width down to the survey limiting S/N (~ 5 per pixel) in the continuum around Na D. The detection rate of LIRG-like outflow clearly shows an increasing trend with star-forming activity and infrared luminosity. However, by virtue of not selecting our sample on star formation, we also find a majority of outflows in galaxies on the red sequence in the rest-frame (U-B, M_B) color-magnitude diagram. Most of these red-sequence outflows are of early-type morphology and show the sign of recent star formation in their UV-optical colors; some show enhanced Balmer H-beta absorption lines indicative of poststarburst as well as high dust extinction. These findings demonstrate that outflows outlive starbursts and suggest that galactic-scale outflows play a role in quenching star formation in the host galaxies on their way to the red sequence. The fate of relic winds, as well as the observational constraints on gaseous feedback models, may be studied in galaxies during their poststarburst phase. We also note the presence of inflow candidates in red, early-type galaxies, some with signs of AGNs/LINERs but little evidence for star formation.Comment: 19 pages & 19 figures (emulateapj); the revision to match the published version in Ap

    A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. I Method description

    Full text link
    We present a new non-parametric method to quantify morphologies of galaxies based on a particular family of learning machines called support vector machines. The method, that can be seen as a generalization of the classical CAS classification but with an unlimited number of dimensions and non-linear boundaries between decision regions, is fully automated and thus particularly well adapted to large cosmological surveys. The source code is available for download at http://www.lesia.obspm.fr/~huertas/galsvm.html To test the method, we use a seeing limited near-infrared (KsK_s band, 2,16μm2,16\mu m) sample observed with WIRCam at CFHT at a median redshift of z0.8z\sim0.8. The machine is trained with a simulated sample built from a local visually classified sample from the SDSS chosen in the high-redshift sample's rest-frame (i band, 0.77μm0.77\mu m) and artificially redshifted to match the observing conditions. We use a 12-dimensional volume, including 5 morphological parameters and other caracteristics of galaxies such as luminosity and redshift. We show that a qualitative separation in two main morphological types (late type and early type) can be obtained with an error lower than 20% up to the completeness limit of the sample (KAB22KAB\sim 22) which is more than 2 times better that what would be obtained with a classical C/A classification on the same sample and indeed comparable to space data. The method is optimized to solve a specific problem, offering an objective and automated estimate of errors that enables a straightforward comparison with other surveys.Comment: 11 pages, 7 figures, 3 tables. Submitted to A&A. High resolution images are available on reques
    corecore