2,682 research outputs found

    New Image Statistics for Detecting Disturbed Galaxy Morphologies at High Redshift

    Get PDF
    Testing theories of hierarchical structure formation requires estimating the distribution of galaxy morphologies and its change with redshift. One aspect of this investigation involves identifying galaxies with disturbed morphologies (e.g., merging galaxies). This is often done by summarizing galaxy images using, e.g., the CAS and Gini-M20 statistics of Conselice (2003) and Lotz et al. (2004), respectively, and associating particular statistic values with disturbance. We introduce three statistics that enhance detection of disturbed morphologies at high-redshift (z ~ 2): the multi-mode (M), intensity (I), and deviation (D) statistics. We show their effectiveness by training a machine-learning classifier, random forest, using 1,639 galaxies observed in the H band by the Hubble Space Telescope WFC3, galaxies that had been previously classified by eye by the CANDELS collaboration (Grogin et al. 2011, Koekemoer et al. 2011). We find that the MID statistics (and the A statistic of Conselice 2003) are the most useful for identifying disturbed morphologies. We also explore whether human annotators are useful for identifying disturbed morphologies. We demonstrate that they show limited ability to detect disturbance at high redshift, and that increasing their number beyond approximately 10 does not provably yield better classification performance. We propose a simulation-based model-fitting algorithm that mitigates these issues by bypassing annotation.Comment: 15 pages, 14 figures, accepted for publication in MNRA

    The Specific Globular Cluster Frequencies of Dwarf Elliptical Galaxies from the Hubble Space Telescope

    Full text link
    The specific globular cluster frequencies (S_N) for 24 dwarf elliptical (dE) galaxies in the Virgo and Fornax Clusters and the Leo Group imaged with the Hubble Space Telescope are presented. Combining all available data, we find that for nucleated dEs --- which are spatially distributed like giant ellipticals in galaxy clusters --- S_N(dE,N)=6.5 +- 1.2 and S_N increases with M_V, while for non-nucleated dEs --- which are distributed like late-type galaxies --- S_N(dE,noN)=3.1 +- 0.5 and there is little or no trend with M_V. The S_N values for dE galaxies are thus on average significantly higher than those for late-type galaxies, which have S_N < 1. This suggests that dE galaxies are more akin to giant Es than to late-type galaxies. If there are dormant or stripped irregulars hiding among the dE population, they are likely to be among the non-nucleated dEs. Furthermore, the similarities in the properties of the globular clusters and in the spatial distributions of dE,Ns and giant Es suggest that neither galaxy mass or galaxy metallicity is responsible for high values of S_N. Instead, most metal-poor GCs may have formed in dwarf-sized fragments that merged into larger galaxies.Comment: 12 pages (uses aaspp4.sty), 2 figures, 1 table, to appear in the Astrophysical Journa

    The Effect of Mass Ratio on the Morphology and Time-scales of Disc Galaxy Mergers

    Full text link
    The majority of galaxy mergers are expected to be minor mergers. The observational signatures of minor mergers are not well understood, thus there exist few constraints on the minor merger rate. This paper seeks to address this gap in our understanding by determining if and when minor mergers exhibit disturbed morphologies and how they differ from the morphology of major mergers. We simulate a series of unequal-mass moderate gas-fraction disc galaxy mergers. With the resulting g-band images, we determine how the time-scale for identifying galaxy mergers via projected separation and quantitative morphology (the Gini coefficient G, asymmetry A, and the second-order moment of the brightest 20% of the light M20) depends on the merger mass ratio, relative orientations and orbital parameters. We find that G-M20 is as sensitive to 9:1 baryonic mass ratio mergers as 1:1 mergers, with observability time-scales ~ 0.2-0.4 Gyr. In contrast, asymmetry finds mergers with baryonic mass ratios between 4:1 and 1:1 (assuming local disc galaxy gas-fractions). Asymmetry time-scales for moderate gas-fraction major disc mergers are ~ 0.2-0.4 Gyr, and less than 0.06 Gyr for moderate gas-fraction minor mergers. The relative orientations and orbits have little effect on the time-scales for morphological disturbances. Observational studies of close pairs often select major mergers by choosing paired galaxies with similar luminosities and/or stellar masses. Therefore, the various ways of finding galaxy mergers (G-M20, A, close pairs) are sensitive to galaxy mergers of different mass ratios. By comparing the frequency of mergers selected by different techniques, one may place empirical constraints on the major and minor galaxy merger rates.Comment: 16 pages; resubmitted to MNRA

    The Effects of an AGN on Host Galaxy Colour and Morphology Measurements

    Full text link
    We assess the effects of simulated active galactic nuclei (AGNs) on the colour and morphology measurements of their host galaxies. To test the morphology measurements, we select a sample of galaxies not known to host AGNs and add a series of point sources scaled to represent specified fractions of the observed V band light detected from the resulting systems; we then compare morphology measurements of the simulated systems to measurements of the original galaxies. AGN contributions >20 per cent bias most of the morphology measurements tested, though the extent of the apparent bias depends on the morphological characteristics of the original galaxies. We test colour measurements by adding to non-AGN galaxy spectra a quasar spectrum scaled to contribute specified fractions of the rest-frame B band light detected from the resulting systems. A quasar fraction of 5 per cent can move the NUV-r colour of an elliptical galaxy from the UV-optical red sequence to the green valley, and 20 per cent can move it into the blue cloud. Combining the colour and morphology results, we find that a galaxy/AGN system with an AGN contribution >20 per cent may appear bluer and more bulge-dominated than the underlying galaxy. We conclude that (1) bulge-dominated, E/S0/Sa, and early-type morphology classifications are accurate for red AGN host galaxies and may be accurate for blue host galaxies, unless the AGN manifests itself as a well-defined point source; and (2) although highly unobscured AGNs, such as the quasar used for our experiments, can significantly bias the measured colours of AGN host galaxies, it is possible to identify such systems by examining optical images of the hosts for the presence of a point source and/or measuring the level of nuclear obscuration.Comment: 18 pages, 19 figures, 1 table. Accepted for publication in MNRA

    The Structures of Distant Galaxies V: The Evolution of Galaxy Structure in Stellar Mass at z < 1

    Full text link
    Galaxy structure and morphology is nearly always studied using the light originating from stars, however ideally one is interested in measuring structure using the stellar mass distribution. Not only does stellar mass trace out the underlying distribution of matter, it also minimises the effects of star formation and dust on the appearance and structure of a galaxy. We present in this paper a study of the stellar mass distributions and structures of galaxies at z<1 as found within the GOODS fields. We use pixel by pixel K-corrections to construct stellar mass and mass-to-light ratio maps of 560 galaxies of known morphology at magnitudes z_{850}<24. We measure structural and size parameters using these stellar mass maps, as well as on ACS BViz band imaging. This includes investigating the structural CAS-Gini-M_{20} parameters and half-light radius for each galaxy. We compare structural parameters and half-light radii in the ACS z_{850}-band and stellar mass maps, finding no systematic bias introduced by measuring galaxy sizes in z_{850}. We furthermore investigate relations between structural parameters in the ACS BViz bands and stellar mass maps, and compare our result to previous morphological studies. Combinations of various parameters in stellar mass generally reveal clear separations between early and late type morphologies, but cannot easily distinguish between star formation and dynamically disturbed systems. We also show that while ellipticals and early-type spirals have fairly constant CAS values at z<1 we find a tendency for late-type spiral and peculiar morphological types to have a higher A(M_{*}) at higher redshift. We argue that this, and the large fraction of peculiars that appear spiral-like in stellar mass maps, are possible evidence for either an active bulge formation in some late-type disks at z<1 or the presence of minor merger events.Comment: 27 pages, MNRAS in pres

    Dynamical Friction in dE Globular Cluster Systems

    Get PDF
    The dynamical friction timescale for globular clusters to sink to the center of a dwarf elliptical galaxy (dE) is significantly less than a Hubble time if the halos have King-model or isothermal profiles and the globular clusters formed with the same radial density profile as the underlying stellar population. We examine the summed radial distribution of the entire globular cluster systems and the bright globular cluster candidates in 51 Virgo and Fornax Cluster dEs for evidence of dynamical friction processes. We find that the summed distribution of the entire globular cluster population closely follows the exponential profile of the underlying stellar population. However, there is a deficit of bright clusters within the central regions of dEs (excluding the nuclei), perhaps due to the orbital decay of these massive clusters into the dE cores. We also predict the magnitude of each dE's nucleus assuming the nuclei form via dynamical friction. The observed trend of decreasing nuclear luminosity with decreasing dE luminosity is much stronger than predicted if the nuclei formed via simple dynamical friction processes. We find that the bright dE nuclei could have been formed from the merger of orbitally decayed massive clusters, but the faint nuclei are several magnitudes fainter than expected. These faint nuclei are found primarily in M_V > -14 dEs which have high globular cluster specific frequencies and extended globular cluster systems. In these galaxies, supernovae-driven winds, high central dark matter densities, extended dark matter halos, the formation of new star clusters, or tidal interactions may act to prevent dynamical friction from collapsing the entire globular cluster population into a single bright nucleus.Comment: 15 pages, 2 tables, 7 figures; to appear in the Astrophysical Journal, April 20, 200

    HST morphologies of local Lyman break galaxy analogs I: Evidence for starbursts triggered by merging

    Get PDF
    Heckman et al. (2005) used the Galaxy Evolution Explorer (GALEX) UV imaging survey to show that there exists a rare population of nearby compact UV-luminous galaxies (UVLGs) that closely resembles high redshift Lyman break galaxies (LBGs). We present HST images in the UV, optical, and Ha, and resimulate them at the depth and resolution of the GOODS/UDF fields to show that the morphologies of UVLGs are also similar to those of LBGs. Our sample of 8 LBG analogs thus provides detailed insight into the connection between star formation and LBG morphology. Faint tidal features or companions can be seen in all of the rest-frame optical images, suggesting that the starbursts are the result of a merger or interaction. The UV/optical light is dominated by unresolved (~100-300 pc) super starburst regions (SSBs). A detailed comparison with the galaxies Haro 11 and VV 114 at z=0.02 indicates that the SSBs themselves consist of diffuse stars and (super) star clusters. The structural features revealed by the new HST images occur on very small physical scales and are thus not detectable in images of high redshift LBGs, except in a few cases where they are magnified by gravitational lensing. We propose, therefore, that LBGs are mergers of gas-rich, relatively low-mass (~10^10 Msun) systems, and that the mergers trigger the formation of SSBs. If galaxies at high redshifts are dominated by SSBs, then the faint end slope of the luminosity function is predicted to have slope alpha~2. Our results are the most direct confirmation to date of models that predict that the main mode of star formation in the early universe was highly collisional.Comment: 32 pages, 15 figures. ApJ In pres

    Host galaxy morphologies of X-ray selected AGN: assessing the significance of different black hole fueling mechanisms to the accretion density of the Universe at z~1

    Full text link
    We use morphological information of X-ray selected AGN hosts to set limits on the fraction of the accretion density of the Universe at z~1 that is not likely to be associated with major mergers. Deep X-ray observations are combined with high resolution optical data from the Hubble Space Telescope in the AEGIS, GOODS North and GOODS South fields to explore the morphological breakdown of X-ray sources in the redshift interval 0.5<z<1.3. The sample is split into disks, early-type bulge dominated galaxies, peculiar systems and point-sources in which the nuclear source outshines the host galaxy. The X-ray luminosity function and luminosity density of AGN at z~1 are then calculated as a function of morphological type. We find that disk-dominated hosts contribute 30\pm9 per cent to the total AGN space density and 23\pm6 per cent to the luminosity density at z~1. We argue that AGN in disk galaxies are most likely fueled not by major merger events but by minor interactions or internal instabilities. We find evidence that these mechanisms may be more efficient in producing luminous AGN (L_X>1e44 erg/s) compared to predictions for the stochastic fueling of massive black holes in disk galaxies.Comment: Accepted for publication in MNRA

    Evolution of dopant-induced helium nanoplasmas

    Get PDF
    Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump-probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced, droplet size-dependent resonance structure in the pump-probe transients reveal the evolution of the dopant-induced helium nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron-ion recombination
    corecore