2,830 research outputs found
Correspondence Estimation from Non-Rigid Motion Information
The DIET (Digital Image Elasto Tomography) system is a novel approach to screen for breast cancer using only optical imaging information of the surface of a vibrating breast. 3D tracking of skin surface motion without the requirement of external markers is desirable. A novel approach to establish point correspondences using pure skin images is presented here. Instead of the intensity, motion is used as the primary feature, which can be extracted using optical flow algorithms. Taking sequences of multiple frames into account, this motion information alone is accurate and unambiguous enough to allow for a 3D reconstruction of the breast surface. Two approaches, direct and probabilistic, for this correspondence estimation are presented here, suitable for different levels of calibration information accuracy. Reconstructions show that the results obtained using these methods are comparable in accuracy to marker-based methods while considerably increasing resolution. The presented method has high potential in optical tissue deformation and motion sensing
Minimal Elastographic Modeling of Breast Cancer for Model Based Tumour Detection in a Digital Image Elasto Tomography (DIET) System
Digital Image Elasto Tomography (DIET) is a non-invasive breast cancer screening technology that images the surface motion of a breast under harmonic mechanical actuation. A new approach capturing the dynamics and characteristics of tumor behavior is presented. A simple mechanical model of the breast is used to identify a transfer function relating the input harmonic actuation to the output surface displacements using imaging data of a silicone phantom. Areas of higher stiffness cause significant changes of damping and resonant frequencies as seen in the resulting Bode plots. A case study on a healthy and tumor silicone breast phantom shows the potential for this model-based method to clearly distinguish cancerous and healthy tissue as well as correctly predicting the tumor position
Empirically modelled Pc3 activity based on solar wind parameters
It is known that under certain solar wind (SW)/interplanetary magnetic field (IMF) conditions (e.g. high SW speed, low cone angle) the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock). Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through upstream waves
Empirically modelled Pc3 activity based on solar wind parameters
It is known that under certain solar wind (SW)/interplanetary magnetic
field (IMF) conditions (e.g. high SW speed, low cone angle) the occurrence of
ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate
that in the event of anomalously low SW particle density, Pc3 activity is
extremely low regardless of otherwise favourable SW speed and cone angle. We
re-investigate the SW control of Pc3 pulsation activity through a statistical
analysis and two empirical models with emphasis on the influence of SW
density on Pc3 activity. We utilise SW and IMF measurements from the OMNI
project and ground-based magnetometer measurements from the MM100 array to
relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple
linear regression and artificial neural network models are used in iterative
processes in order to identify sets of SW-based input parameters, which
optimally reproduce a set of Pc3 activity data. The inclusion of SW density
in the parameter set significantly improves the models. Not only the density
itself, but other density related parameters, such as the dynamic pressure of
the SW, or the standoff distance of the magnetopause work equally well in the
model. The disappearance of Pc3s during low-density events can have at least
four reasons according to the existing upstream wave theory: 1. Pausing the
ion-cyclotron resonance that generates the upstream ultra low frequency waves
in the absence of protons, 2. Weakening of the bow shock that implies less
efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not
able to sweep back the waves propagating upstream with the Alfvén-speed,
and 4. The increase of the standoff distance of the magnetopause (and of the
bow shock). Although the models cannot account for the lack of Pc3s during
intervals when the SW density is extremely low, the resulting sets of optimal
model inputs support the generation of mid latitude Pc3 activity
predominantly through upstream waves
The Effect of Mass Ratio on the Morphology and Time-scales of Disc Galaxy Mergers
The majority of galaxy mergers are expected to be minor mergers. The
observational signatures of minor mergers are not well understood, thus there
exist few constraints on the minor merger rate. This paper seeks to address
this gap in our understanding by determining if and when minor mergers exhibit
disturbed morphologies and how they differ from the morphology of major
mergers. We simulate a series of unequal-mass moderate gas-fraction disc galaxy
mergers. With the resulting g-band images, we determine how the time-scale for
identifying galaxy mergers via projected separation and quantitative morphology
(the Gini coefficient G, asymmetry A, and the second-order moment of the
brightest 20% of the light M20) depends on the merger mass ratio, relative
orientations and orbital parameters. We find that G-M20 is as sensitive to 9:1
baryonic mass ratio mergers as 1:1 mergers, with observability time-scales ~
0.2-0.4 Gyr. In contrast, asymmetry finds mergers with baryonic mass ratios
between 4:1 and 1:1 (assuming local disc galaxy gas-fractions). Asymmetry
time-scales for moderate gas-fraction major disc mergers are ~ 0.2-0.4 Gyr, and
less than 0.06 Gyr for moderate gas-fraction minor mergers. The relative
orientations and orbits have little effect on the time-scales for morphological
disturbances. Observational studies of close pairs often select major mergers
by choosing paired galaxies with similar luminosities and/or stellar masses.
Therefore, the various ways of finding galaxy mergers (G-M20, A, close pairs)
are sensitive to galaxy mergers of different mass ratios. By comparing the
frequency of mergers selected by different techniques, one may place empirical
constraints on the major and minor galaxy merger rates.Comment: 16 pages; resubmitted to MNRA
Recommended from our members
ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervious system
Alternative polyadenylation (APA) has been implicated in a variety of developmental and disease processes. A particularly dramatic form of APA occurs in the developing nervous system of flies and mammals, whereby various developmental genes undergo coordinate 3' UTR extension. In Drosophila, the RNA-binding protein ELAV inhibits RNA processing at proximal polyadenylation sites, thereby fostering the formation of exceptionally long 3' UTRs. Here, we present evidence that paused Pol II promotes recruitment of ELAV to extended genes. Replacing promoters of extended genes with heterologous promoters blocks normal 3' extension in the nervous system, while extension-associated promoters can induce 3' extension in ectopic tissues expressing ELAV. Computational analyses suggest that promoter regions of extended genes tend to contain paused Pol II and associated cis-regulatory elements such as GAGA. ChIP-seq assays identify ELAV in the promoter regions of extended genes. Our study provides evidence for a regulatory link between promoter-proximal pausing and APA
A Minimal C-Peptide Sampling Method to Capture Peak and Total Pre-Hepatic Insulin Secretion in Model-Based Experimental Insulin Sensitivity Studies
Aims and Background:
Model-based insulin sensitivity testing via the intravenous glucose tolerance test (IVGTT) or similar is clinically very intensive due to the need for frequent sampling to accurately capture the dynamics of insulin secretion and clearance. The goal of this study was to significantly reduce the number of samples required in intravenous glucose tolerance test protocols to accurately identify C-peptide and insulin secretion characteristics.
Methods:
Frequently sampled IVGTT data from 12 subjects [5 normal glucose-tolerant (NGT) and 7 type 2 diabetes mellitus (T2DM)] were analyzed to calculate insulin and C-peptide secretion using a well-accepted C-peptide model. Samples were reduced in a series of steps based on the critical IVGTT profile points required for the
accurate estimation of C-peptide secretion. The full data set of 23 measurements was reduced to sets with six or four measurements. The peak secretion rate and total secreted C-peptide during 10 and 20 minutes
postglucose input and during the total test time were calculated. Results were compared to those from the
full data set using the Wilcoxon rank sum to assess any differences.
Results:
In each case, the calculated secretion metrics were largely unchanged, within expected assay variation, and not significantly different from results obtained using the full 23 measurement data set (P < 0.05).
Conclusions:
Peak and total C-peptide and insulin secretory characteristics can be estimated accurately in an IVGTT from as few as four systematically chosen samples, providing an opportunity to minimize sampling, cost, and burden
Cloud and surface classification using SCIAMACHY polarization measurement devices
International audienceA simple scheme has been developed to discriminate surface, sun glint and cloud properties in satellite based spectrometer data utilizing visible and near infrared information. It has been designed for the use with data measured by SCIAMACHY's (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) Polarization Measurement Devices but the applicability is not strictly limited to this instrument. The scheme is governed by a set of constraints and thresholds developed by using satellite imagery and meteorological data. Classification targets are ice, water and generic clouds, sun glint and surface parameters, such as water, snow/ice, desert and vegetation. The validation is done using MERIS (MEdium Resolution Imaging Spectrometer) and meteorological data from METAR (MÉTéorologique Aviation Régulière ? a network for the provision of meteorological data for aviation). Qualitative and quantitative validation using MERIS satellite imagery shows good agreement. The comparison with METAR data exhibits very good agreement
Long term verification of glucose-insulin regulatory system model dynamics
doi: 10.1109/IEMBS.2004.1403269Hyperglycaemia in critically ill patients increases the
risk of further complications and mortality. A long-term
verification of a model that captures the essential glucose- and
insulin-kinetics is presented, using retrospective data gathered
in an Intensive Care Unit (ICU). The model uses only two
patient specific parameters, for glucose clearance and insulin
sensitivity. The optimization of these parameters is
accomplished through a novel integration-based fitting
approach, and a piecewise linearization of the parameters. This
approach reduces the non-linear, non-convex optimization
problem to a simple linear equation system. The method was
tested on long-term blood glucose recordings from 17 ICU-patients,
resulting in an average error of 7%, which is in the
range of the sensor error. One-hour predictions of blood
glucose data proved acceptable with an error range between 7-
11%. These results verify the model’s ability to capture longterm
observed glucose-insulin dynamics in hyperglycaemic
ICU patients
Quantified HI Morphology III: Merger Visibility Times from HI in Galaxy Simulations
Major mergers of disk galaxies are thought to be a substantial driver in
galaxy evolution. To trace the fraction and the rate galaxies are in mergers
over cosmic times, several observational techniques, including morphological
selection criteria, have been developed over the last decade. We apply this
morphological selection of mergers to 21 cm radio emission line (HI) column
density images of spiral galaxies in nearby surveys. In this paper, we
investigate how long a 1:1 merger is visible in HI from N-body simulations. We
evaluate the merger visibility times for selection criteria based on four
parameters: Concentration, Asymmetry, M20, and the Gini parameter of second
order moment of the flux distribution (GM). Of three selection criteria used in
the literature, one based on Concentration and M20 works well for the HI
perspective with a merger time scale of 0.4 Gyr. Of the three selection
criteria defined in our previous paper, the GM performs well and cleanly
selects mergers for 0.69 Gyr. The other two criteria (A-M20 and C-M20), select
isolated disks as well, but perform best for face-on, gas-rich disks (T(merger)
~ 1 Gyr). The different visibility scales can be combined with the selected
fractions of galaxies in any large HI survey to obtain merger rates in the
nearby Universe. All-sky surveys such as WALLABY with ASKAP and the Medium Deep
Survey with the APETIF instrument on Westerbork are set to revolutionize our
perspective on neutral hydrogen and will provide an accurate measure of the
merger fraction and rate of the present epoch.Comment: 12 pages, 6 figures, 4 tables, accepted by MNRAS, appendix not
include
- …
