518 research outputs found

    Ferro-lattice-distortions and charge fluctuations in superconducting LaO1x_{1-x}Fx_{x}BiS2_{2}

    Full text link
    Competing ferroelectric and charge density wave phases have been proposed to be present in the electron-phonon coupled LaO1x_{1-x}Fx_{x}BiS2_{2} superconductor. The lattice instability arises from unstable phonon modes that can break the crystal symmetry. Upon examination of the crystal structure using single crystal diffraction, we find a superlattice pattern arising from coherent in-plane displacements of the sulfur atoms in the BiS2_{2} superconducting planes. The distortions morph into coordinated ferro-distortive patterns, challenging previous symmetry suggestions including the possible presence of unstable antiferro-distortive patterns. The ferro-distortive pattern remains in the superconducting state, but with the displacements diminished in magnitude. Moreover, the sulfur displacements can exist in several polytypes stacked along the c-axis. Charge carriers can get trapped in the lattice deformations reducing the effective number of carriers available for pairing

    Phonons from neutron powder diffraction

    Full text link
    The spherically averaged structure function \soq obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of \soq to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e. it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure (dynamics from powder diffraction(DPD)) has been successfully implemented for two systems, a simple metal, fcc Ni, and an ionic crystal, CaF2_{2}. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from powder neutron diffraction

    The Use of Picture Cards to Elicit Postgraduate Dental Student Feedback

    Get PDF
    The aim of this study was to elicit information about the use of picture cards to stimulate student feedback following a postgraduate dental course. Twenty-nine general dental practitioners (GDPs) volunteered for the study. Following an explanation of how this style of feedback worked, students were asked to choose a picture card from those available and use that image to stimulate their feedback. An independent interviewer introduced the topic and gathered comments in the form of qualitative data, generated by pre-formed questions. 93% (n = 26) questionnaires were completed and returned. 77% (n = 20) GDPs reported enjoying giving their feedback by ‘picture card’ technique; 83% (n = 20) reported this form of feedback stimulated their thoughts. Qualitative data were analysed thematically. Some GDPs felt the picture cards helped them formulate their feedback, others felt being able to give feedback to a third party they did not know was beneficial and giving feedback as a group was helpful. This novel approach of using picture cards to stimulate feedback was well received by these GDPs. A mixed result as to the value of this style of feedback was evident. A group feedback session facilitated by a stranger was considered to be a valuable approach to take

    Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of 2H2H-TaS2_2

    Get PDF
    We report an in-depth Angle Resolved Photoemission Spectroscopy (ARPES) study on 2H2H-TaS2_2, a canonical incommensurate Charge Density Wave (CDW) system. This study demonstrates that just as in related incommensurate CDW systems, 2H2H-TaSe2_2 and 2H2H-NbSe2_2, the energy gap (Δcdw\Delta_{\text{cdw}}\,) of 2H2H-TaS2_2 is localized along the K-centered Fermi surface barrels and is particle-hole asymmetric. The persistence of Δcdw\Delta_{\text{cdw}}\, even at temperatures higher than the CDW transition temperature Tcdw\it{T}_{\text{cdw}}\, in 2H2H-TaS2_2, reflects the similar pseudogap (PG) behavior observed previously in 2H2H-TaSe2_2 and 2H2H-NbSe2_2. However, in sharp contrast to 2H2H-NbSe2_2, where Δcdw\Delta_{\text{cdw}}\, is non-zero only in the vicinity of a few "hot spots" on the inner K-centered Fermi surface barrels, Δcdw\Delta_{\text{cdw}}\, in 2H2H-TaS2_2 is non-zero along the entirety of both K-centered Fermi surface barrels. Based on a tight-binding model, we attribute this dichotomy in the momentum dependence and the Fermi surface specificity of Δcdw\Delta_{\text{cdw}}\, between otherwise similar CDW compounds to the different orbital orientations of their electronic states that are involved in CDW pairing. Our results suggest that the orbital selectivity plays a critical role in the description of incommensurate CDW materials.Comment: 6 pages, 4 figure

    Band-filling effects on electron-phonon properties of normal and superconducting state

    Full text link
    We address the effect of band filling on the effective electron mass mm^* and the superconducting critical temperature TcT_c in a electron-phonon system. We compare the vertex corrected theory with the non-crossing approximation of the Holstein model within a local approximation. We identify two regions of the electron density where mm^* and TcT_c are enhanced or decreased by the inclusion of the vertex diagrams. We show that the crossover between the enhancement at low density and the decrease towards half filling is almost independent of the microscopic electron-phonon parameters. These different behaviors are explained in terms of the net sign of the vertex diagrams which is positive at low densities and negative close to half filling. Predictions of the present theory for doped MgB2_2, which is argued to be in the low density regime, are discussed.Comment: 13 revtex pages, figures eps include

    Magnetic-field-induced collapse of charge-ordered nanoclusters and the Colossal Magnetoresistance effect in Nd(0.3)Sr(0.3)MnO(3)

    Full text link
    We report synchrotron x-ray scattering studies of charge/orbitally ordered (COO) nanoclusters in Nd0.7_{0.7}Sr0.3_{0.3}MnO3_3. We find that the COO nanoclusters are strongly suppressed in an applied magnetic field, and that their decreasing concentration follows the field-induced decrease of the sample electrical resistivity. The COO nanoclusters, however, do not completely disappear in the conducting state, suggesting that this state is inhomogeneous and contains an admixture of an insulating phase. Similar results were also obtained for the zero-field insulator-metal transition that occurs as temperature is reduced. These observations suggest that these correlated lattice distortions play a key role in the Colossal Magnetoresistance effect in this prototypical manganite.Comment: 5 pages, 3 embedded eps figures; to appear in PRB Rapid Commumication

    Nanoscale anisotropic structural correlations in the paramagnetic and ferromagnetic phases of Nd0.5Sr0.5 MnO3

    Full text link
    We report x-ray scattering studies of short-range structural correlations and diffuse scattering in Nd0.5Sr0.5MnO3. On cooling, this material undergoes a series of transitions, first from a paramagnetic insulating (PI) to a ferromagnetic metallic (FM) phase, and then to a charge-ordered (CO) insulating state. Highly anisotropic structural correlations were found in both the PI and FM states. The correlations increase with decreasing temperature, reaching a maximum at the CO transition temperature. Below this temperature, they abruptly collapsed. Single-polaron diffuse scattering was also observed in both the PI and FM states suggesting that substantial local lattice distortions are present in these phases. We argue that our measurements indicate that nanoscale regions exhibiting layered orbital order exist in the paramagnetic and ferromagnetic phases of Nd0.5Sr0.5MnO3.Comment: 5 pages, 4 embedded figure
    corecore