754 research outputs found

    Analysis of the diffuse-domain method for solving PDEs in complex geometries

    Full text link
    In recent work, Li et al.\ (Comm.\ Math.\ Sci., 7:81-107, 2009) developed a diffuse-domain method (DDM) for solving partial differential equations in complex, dynamic geometries with Dirichlet, Neumann, and Robin boundary conditions. The diffuse-domain method uses an implicit representation of the geometry where the sharp boundary is replaced by a diffuse layer with thickness ϵ\epsilon that is typically proportional to the minimum grid size. The original equations are reformulated on a larger regular domain and the boundary conditions are incorporated via singular source terms. The resulting equations can be solved with standard finite difference and finite element software packages. Here, we present a matched asymptotic analysis of general diffuse-domain methods for Neumann and Robin boundary conditions. Our analysis shows that for certain choices of the boundary condition approximations, the DDM is second-order accurate in ϵ\epsilon. However, for other choices the DDM is only first-order accurate. This helps to explain why the choice of boundary-condition approximation is important for rapid global convergence and high accuracy. Our analysis also suggests correction terms that may be added to yield more accurate diffuse-domain methods. Simple modifications of first-order boundary condition approximations are proposed to achieve asymptotically second-order accurate schemes. Our analytic results are confirmed numerically in the L2L^2 and LL^\infty norms for selected test problems.Comment: 32 pages, 12 figure

    Diffuse interface models of locally inextensible vesicles in a viscous fluid

    Full text link
    We present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous fluid. A new feature of this work is the implementation of the local inextensibility condition in the diffuse interface context. Local inextensibility is enforced by using a local Lagrange multiplier, which provides the necessary tension force at the interface. To solve for the local Lagrange multiplier, we introduce a new equation whose solution essentially provides a harmonic extension of the local Lagrange multiplier off the interface while maintaining the local inextensibility constraint near the interface. To make the method more robust, we develop a local relaxation scheme that dynamically corrects local stretching/compression errors thereby preventing their accumulation. Asymptotic analysis is presented that shows that our new system converges to a relaxed version of the inextensible sharp interface model. This is also verified numerically. Although the model does not depend on dimension, we present numerical simulations only in 2D. To solve the 2D equations numerically, we develop an efficient algorithm combining an operator splitting approach with adaptive finite elements where the Navier-Stokes equations are implicitly coupled to the diffuse interface inextensibility equation. Numerical simulations of a single vesicle in a shear flow at different Reynolds numbers demonstrate that errors in enforcing local inextensibility may accumulate and lead to large differences in the dynamics in the tumbling regime and differences in the inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm is shown to effectively prevent this accumulation by driving the system back to its equilibrium state when errors in local inextensibility arise.Comment: 25 page
    corecore