2,713 research outputs found

    Pioneer 12 (PN-12)

    Get PDF
    The DSN (Deep Space Network) mission support requirements for Pioneer 12 are summarized. The Pioneer 12 spacecraft is in a 24-hour elliptical orbit around Venus. Atmospheric and altimetry data are obtained mainly around periapsis, and planetary imaging is normally performed around apoapsis. The Pioneer 12 mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility

    Pioneer 10 and 11

    Get PDF
    The DSN (Deep Space Network) mission support requirements for Pioneer 10 and 11 are summarized. The primary objective of these Pioneer missions is to investigate the interplanetary medium beyond the orbit of Saturn and, in particular, to gather data which may locate the heliopause as these spacecraft cruise out of the solar system to the extreme of their communication capabilities. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility

    The domination number of on-line social networks and random geometric graphs

    Get PDF
    We consider the domination number for on-line social networks, both in a stochastic network model, and for real-world, networked data. Asymptotic sublinear bounds are rigorously derived for the domination number of graphs generated by the memoryless geometric protean random graph model. We establish sublinear bounds for the domination number of graphs in the Facebook 100 data set, and these bounds are well-correlated with those predicted by the stochastic model. In addition, we derive the asymptotic value of the domination number in classical random geometric graphs

    Specifics about Specific Ion Adsorption from Heterodyne-Detected Second Harmonic Generation

    Full text link
    Ion specific outcomes at aqueous interfaces remain among the most enigmatic phenomena in interfacial chemistry. Here, charged fused silica/water interfaces have been probed by homodyne- and heterodyne-detected (HD) second harmonic generation (SHG) spectroscopy at pH 7 and pH 5.8 and for concentrations of LiCl, NaCl, NaBr, NaI, KCl, RbCl, and CsCl ranging from 10 mc microM to several 100 mM. For ionic strengths around 0.1 mM to 1 mM, SHG intensities increase reversibly by up to 15% compared to the condition of zero added salt because of optical phase matching and electrical double layer. For ionic strengths above 1 mM, use of any combination of cations and anions produces decreases in SHG response by as much as 50%, trending with ion softness when compared to the condition of zero added salt. Gouy- Chapman model fits to homodyned SHG intensities for the alkali halides studied here show charge densities increase significantly with decreasing cation size. HD-SHG measurements indicate diffuse layer properties probed by the SHG process are invariant with ion identity, while Stern layer properties, as reported by chi(2), are subject to ion specificity for the ions surveyed in this work in the order of chi(2)RbCl = 1/2 chi(2)NaCl = 1/4 chi(2)NaI .Comment: Pre-edited version, 15 manuscript pages, 2 tables, 5 figures. Supporting Information available up request to the corresponding autho

    Examining the origins of ocean heat content variability in the eastern North Atlantic subpolar gyre

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 11,275-11,283, doi:10.1029/2018GL079122.We analyze sources of ocean heat content (OHC) variability in the eastern North Atlantic subpolar gyre from both Eulerian and Lagrangian perspectives within two ocean simulations from 1990 to 2015. Heat budgets reveal that while the OHC seasonal cycle is driven by air‐sea fluxes, interannual OHC variability is driven by both air‐sea fluxes and the divergence of ocean heat transport, the latter of which is dominated by the oceanic flux through the southern face of the study area. Lagrangian trajectories initialized along the southern face and run backward in time indicate that interannual variability in the subtropical‐origin volume flux (i.e., the upper limb of the overturning circulation) drives variability in the temperature flux through the southern face. As such, the heat carried by the imported subtropical waters is an important component of the eastern subpolar gyre heat budget on interannual time scales.NSF. Grant Number NSF‐OCE‐12‐59102; NASA Grant Number: NNX13AO21H2019-04-2
    corecore