13,910 research outputs found
Group 14-,15-,16-elements in the periphery of Trovacene: new derivates to study electronic communication in di- and trinuclear complexes
Optimal competitiveness for the Rectilinear Steiner Arborescence problem
We present optimal online algorithms for two related known problems involving
Steiner Arborescence, improving both the lower and the upper bounds. One of
them is the well studied continuous problem of the {\em Rectilinear Steiner
Arborescence} (). We improve the lower bound and the upper bound on the
competitive ratio for from and to
, where is the number of Steiner
points. This separates the competitive ratios of and the Symetric-,
two problems for which the bounds of Berman and Coulston is STOC 1997 were
identical. The second problem is one of the Multimedia Content Distribution
problems presented by Papadimitriou et al. in several papers and Charikar et
al. SODA 1998. It can be viewed as the discrete counterparts (or a network
counterpart) of . For this second problem we present tight bounds also in
terms of the network size, in addition to presenting tight bounds in terms of
the number of Steiner points (the latter are similar to those we derived for
)
Interaction between concentric Tubes in DWCNTs
A detailed investigation of the Raman response of the inner tube radial
breathing modes (RBMs) in double-wall carbon nanotubes is reported. It revealed
that the number of observed RBMs is two to three times larger than the number
of possible tubes in the studied frequency range. This unexpected increase in
Raman lines is attributed to a splitting of the inner tube response. It is
shown to originate from the possibility that one type of inner tube may form in
different types of outer tubes and the fact that the inner tube RBM frequency
depends on the diameter of the enclosing tube. Finally, a comparison of the
inner tube RBMs and the RBMs of tubes in bundles gave clear evidence that the
interaction in a bundle is stronger than the interaction between inner and
outer tubes.Comment: 6 pages, 7 figures, submitted to Eur. Phys. J.
Theoretical prediction on the structural, electronic, and polarization properties of tetragonal Bi₂ZnTiO₆
Author name used in this publication: C. H. Woo2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Single channel wireless EEG device for real-time fatigue level detection
© 2015 IEEE. Driver fatigue problem is one of the important factors of traffic accidents. Recent years, many research had investigated that using EEG signals can effectively detect driver's drowsiness level. However, real-time monitoring system is required to apply these fatigue level detection techniques in the practical application, especially in the real-road driving. Therefore, it required less channels, portable and wireless, real-time monitoring and processing techniques for developing the real-time monitoring system. In this study, we develop a single channel wireless EEG device which can real-time detect driver's fatigue level on the mobile device such as smart phone or tablet. The developed device is investigated to obtain a better and precise understanding of brain activities of mental fatigue under driving, which is of great benefit for devolvement of detection of driving fatigue system. This system consists of a Bluetooth-enabled one channel EEG, a regression model, and smartphone, which was a platform recording and transforming the raw EEG data to useful driving status. In the experiment, this was a sustained-attention driving task to implement in a virtual-reality (VR) driving simulator. To training model and develop the system, we were performed for 15 subjects to study Electroencephalography (EEG) brain dynamics by using a mobile and wireless EEG device. Based on the outstanding training results, the leave-one-subject-out cross validation test obtained 90% fatigue detection accuracy. These results indicate that the combination of a smartphone and wireless EEG device constitutes an effective and easy wearable solution for detecting and preventing driver fatigue in real driving environments
Effect of bilayer coupling on tunneling conductance of double-layer high T_c cuprates
Physical effects of bilayer coupling on the tunneling spectroscopy of high
T cuprates are investigated. The bilayer coupling separates the bonding
and antibonding bands and leads to a splitting of the coherence peaks in the
tunneling differential conductance. However, the coherence peak of the bonding
band is strongly suppressed and broadened by the particle-hole asymmetry in the
density of states and finite quasiparticle life-time, and is difficult to
resolve by experiments. This gives a qualitative account why the bilayer
splitting of the coherence peaks was not clearly observed in tunneling
measurements of double-layer high-T oxides.Comment: 4 pages, 3 figures, to be published in PR
Critical points and supersymmetric vacua, III: String/M models
A fundamental problem in contemporary string/M theory is to count the number
of inequivalent vacua satisfying constraints in a string theory model. This
article contains the first rigorous results on the number and distribution of
supersymmetric vacua of type IIb string theories compactified on a Calabi-Yau
3-fold with flux. In particular, complete proofs of the counting formulas
in Ashok-Douglas and Denef-Douglas are given, together with van der Corput
style remainder estimates. We also give evidence that the number of vacua
satisfying the tadpole constraint in regions of bounded curvature in moduli
space is of exponential growth in .Comment: Final revision for publication in Commun. Math. Phys. Minor
corrections and editorial change
Low temperature vortex liquid in
In the cuprates, the lightly-doped region is of major interest because
superconductivity, antiferromagnetism, and the pseudogap state
\cite{Timusk,Lee,Anderson} come together near a critical doping value .
These states are deeply influenced by phase fluctuations \cite{Emery} which
lead to a vortex-liquid state that surrounds the superconducting region
\cite{WangPRB01,WangPRB06}. However, many questions
\cite{Doniach,Fisher,FisherLee,Tesanovic,Sachdev} related to the nature of the
transition and vortex-liquid state at very low tempera- tures remain open
because the diamagnetic signal is difficult to resolve in this region. Here, we
report torque magnetometry results on (LSCO) which show
that superconductivity is lost at by quantum phase fluctuations. We find
that, in a magnetic field , the vortex solid-to-liquid transition occurs at
field much lower than the depairing field . The vortex liquid
exists in the large field interval , even in the limit 0.
The resulting phase diagram reveals the large fraction of the - plane
occupied by the quantum vortex liquid.Comment: 6 pages, 4 figures, submitted to Nature Physic
Raman study of carrier-overdoping effects on the gap in high-Tc superconducting cuprates
Raman scattering in the heavily overdoped (Y,Ca)Ba_2Cu_3O_{7-d} (T_c = 65 K)
and Bi_2Sr_2CaCu_2O_{8+d} (T_c = 55 K) crystals has been investigated. For the
both crystals, the electronic pair-breaking peaks in the A_{1g} and B_{1g}
polarizations were largely shifted to the low energies close to a half of
2Delta_0, Delta_0 being the maximum gap. It strongly suggests s-wave mixing
into the d-wave superconducting order parameter and the consequent
manifestation of the Coulomb screening effect in the B_{1g}-channel. Gradual
mixing of s-wave component with overdoping is not due to the change of crystal
structure symmetry but a generic feature in all high-T_c superconducting
cuprates.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B, Rapid
communicaito
A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells
The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent.published_or_final_versio
- …
