177 research outputs found

    Maximin Fairness with Mixed Divisible and Indivisible Goods

    Full text link
    We study fair resource allocation when the resources contain a mixture of divisible and indivisible goods, focusing on the well-studied fairness notion of maximin share fairness (MMS). With only indivisible goods, a full MMS allocation may not exist, but a constant multiplicative approximate allocation always does. We analyze how the MMS approximation guarantee would be affected when the resources to be allocated also contain divisible goods. In particular, we show that the worst-case MMS approximation guarantee with mixed goods is no worse than that with only indivisible goods. However, there exist problem instances to which adding some divisible resources would strictly decrease the MMS approximation ratio of the instance. On the algorithmic front, we propose a constructive algorithm that will always produce an α\alpha-MMS allocation for any number of agents, where α\alpha takes values between 1/21/2 and 11 and is a monotone increasing function determined by how agents value the divisible goods relative to their MMS values.Comment: Appears in the 35th AAAI Conference on Artificial Intelligence (AAAI), 202

    Fair Division of Mixed Divisible and Indivisible Goods

    Full text link
    We study the problem of fair division when the resources contain both divisible and indivisible goods. Classic fairness notions such as envy-freeness (EF) and envy-freeness up to one good (EF1) cannot be directly applied to the mixed goods setting. In this work, we propose a new fairness notion envy-freeness for mixed goods (EFM), which is a direct generalization of both EF and EF1 to the mixed goods setting. We prove that an EFM allocation always exists for any number of agents. We also propose efficient algorithms to compute an EFM allocation for two agents and for nn agents with piecewise linear valuations over the divisible goods. Finally, we relax the envy-free requirement, instead asking for ϵ\epsilon-envy-freeness for mixed goods (ϵ\epsilon-EFM), and present an algorithm that finds an ϵ\epsilon-EFM allocation in time polynomial in the number of agents, the number of indivisible goods, and 1/ϵ1/\epsilon.Comment: Appears in the 34th AAAI Conference on Artificial Intelligence (AAAI), 202

    Mixed Fair Division: A Survey

    Full text link
    Fair division considers the allocation of scarce resources among agents in such a way that every agent gets a fair share. It is a fundamental problem in society and has received significant attention and rapid developments from the game theory and artificial intelligence communities in recent years. The majority of the fair division literature can be divided along at least two orthogonal directions: goods versus chores, and divisible versus indivisible resources. In this survey, besides describing the state of the art, we outline a number of interesting open questions and future directions in three mixed fair division settings: (i) indivisible goods and chores, (ii) divisible and indivisible goods (mixed goods), and (iii) indivisible goods with subsidy which can be viewed like a divisible good.Appears in the 38th AAAI Conference on Artificial Intelligence (AAAI), Senior Member Presentation Track, 202

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    JUNO Sensitivity to Invisible Decay Modes of Neutrons

    Full text link
    We explore the bound neutrons decay into invisible particles (e.g., n3νn\rightarrow 3 \nu or nn2νnn \rightarrow 2 \nu) in the JUNO liquid scintillator detector. The invisible decay includes two decay modes: ninv n \rightarrow { inv} and nninv nn \rightarrow { inv} . The invisible decays of ss-shell neutrons in 12C^{12}{\rm C} will leave a highly excited residual nucleus. Subsequently, some de-excitation modes of the excited residual nuclei can produce a time- and space-correlated triple coincidence signal in the JUNO detector. Based on a full Monte Carlo simulation informed with the latest available data, we estimate all backgrounds, including inverse beta decay events of the reactor antineutrino νˉe\bar{\nu}_e, natural radioactivity, cosmogenic isotopes and neutral current interactions of atmospheric neutrinos. Pulse shape discrimination and multivariate analysis techniques are employed to further suppress backgrounds. With two years of exposure, JUNO is expected to give an order of magnitude improvement compared to the current best limits. After 10 years of data taking, the JUNO expected sensitivities at a 90% confidence level are τ/B(ninv)>5.0×1031yr\tau/B( n \rightarrow { inv} ) > 5.0 \times 10^{31} \, {\rm yr} and τ/B(nninv)>1.4×1032yr\tau/B( nn \rightarrow { inv} ) > 1.4 \times 10^{32} \, {\rm yr}.Comment: 28 pages, 7 figures, 4 table

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Musical Concepts of Chinese Composers Wang Guangqi and Xiao Yumei

    No full text

    Interdisciplinary Foundations of Comparative Musicology by Wang Guangqi

    No full text
    corecore