177 research outputs found
Maximin Fairness with Mixed Divisible and Indivisible Goods
We study fair resource allocation when the resources contain a mixture of
divisible and indivisible goods, focusing on the well-studied fairness notion
of maximin share fairness (MMS). With only indivisible goods, a full MMS
allocation may not exist, but a constant multiplicative approximate allocation
always does. We analyze how the MMS approximation guarantee would be affected
when the resources to be allocated also contain divisible goods. In particular,
we show that the worst-case MMS approximation guarantee with mixed goods is no
worse than that with only indivisible goods. However, there exist problem
instances to which adding some divisible resources would strictly decrease the
MMS approximation ratio of the instance. On the algorithmic front, we propose a
constructive algorithm that will always produce an -MMS allocation for
any number of agents, where takes values between and and is
a monotone increasing function determined by how agents value the divisible
goods relative to their MMS values.Comment: Appears in the 35th AAAI Conference on Artificial Intelligence
(AAAI), 202
Fair Division of Mixed Divisible and Indivisible Goods
We study the problem of fair division when the resources contain both
divisible and indivisible goods. Classic fairness notions such as envy-freeness
(EF) and envy-freeness up to one good (EF1) cannot be directly applied to the
mixed goods setting. In this work, we propose a new fairness notion
envy-freeness for mixed goods (EFM), which is a direct generalization of both
EF and EF1 to the mixed goods setting. We prove that an EFM allocation always
exists for any number of agents. We also propose efficient algorithms to
compute an EFM allocation for two agents and for agents with piecewise
linear valuations over the divisible goods. Finally, we relax the envy-free
requirement, instead asking for -envy-freeness for mixed goods
(-EFM), and present an algorithm that finds an -EFM
allocation in time polynomial in the number of agents, the number of
indivisible goods, and .Comment: Appears in the 34th AAAI Conference on Artificial Intelligence
(AAAI), 202
Mixed Fair Division: A Survey
Fair division considers the allocation of scarce resources among agents in such a way that every agent gets a fair share. It is a fundamental problem in society and has received significant attention and rapid developments from the game theory and artificial intelligence communities in recent years. The majority of the fair division literature can be divided along at least two orthogonal directions: goods versus chores, and divisible versus indivisible resources. In this survey, besides describing the state of the art, we outline a number of interesting open questions and future directions in three mixed fair division settings: (i) indivisible goods and chores, (ii) divisible and indivisible goods (mixed goods), and (iii) indivisible goods with subsidy which can be viewed like a divisible good.Appears in the 38th AAAI Conference on Artificial Intelligence (AAAI), Senior Member Presentation Track, 202
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
JUNO Sensitivity to Invisible Decay Modes of Neutrons
We explore the bound neutrons decay into invisible particles (e.g.,
or ) in the JUNO liquid scintillator
detector. The invisible decay includes two decay modes: and . The invisible decays of -shell neutrons in
will leave a highly excited residual nucleus. Subsequently, some
de-excitation modes of the excited residual nuclei can produce a time- and
space-correlated triple coincidence signal in the JUNO detector. Based on a
full Monte Carlo simulation informed with the latest available data, we
estimate all backgrounds, including inverse beta decay events of the reactor
antineutrino , natural radioactivity, cosmogenic isotopes and
neutral current interactions of atmospheric neutrinos. Pulse shape
discrimination and multivariate analysis techniques are employed to further
suppress backgrounds. With two years of exposure, JUNO is expected to give an
order of magnitude improvement compared to the current best limits. After 10
years of data taking, the JUNO expected sensitivities at a 90% confidence level
are and
.Comment: 28 pages, 7 figures, 4 table
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
- …
