16,464 research outputs found
TasselNet: Counting maize tassels in the wild via local counts regression network
Accurately counting maize tassels is important for monitoring the growth
status of maize plants. This tedious task, however, is still mainly done by
manual efforts. In the context of modern plant phenotyping, automating this
task is required to meet the need of large-scale analysis of genotype and
phenotype. In recent years, computer vision technologies have experienced a
significant breakthrough due to the emergence of large-scale datasets and
increased computational resources. Naturally image-based approaches have also
received much attention in plant-related studies. Yet a fact is that most
image-based systems for plant phenotyping are deployed under controlled
laboratory environment. When transferring the application scenario to
unconstrained in-field conditions, intrinsic and extrinsic variations in the
wild pose great challenges for accurate counting of maize tassels, which goes
beyond the ability of conventional image processing techniques. This calls for
further robust computer vision approaches to address in-field variations. This
paper studies the in-field counting problem of maize tassels. To our knowledge,
this is the first time that a plant-related counting problem is considered
using computer vision technologies under unconstrained field-based environment.Comment: 14 page
The resilience of interdependent transportation networks under targeted attack
Modern world builds on the resilience of interdependent infrastructures
characterized as complex networks. Recently, a framework for analysis of
interdependent networks has been developed to explain the mechanism of
resilience in interdependent networks. Here we extend this interdependent
network model by considering flows in the networks and study the system's
resilience under different attack strategies. In our model, nodes may fail due
to either overload or loss of interdependency. Under the interaction between
these two failure mechanisms, it is shown that interdependent scale-free
networks show extreme vulnerability. The resilience of interdependent SF
networks is found in our simulation much smaller than single SF network or
interdependent SF networks without flows.Comment: 5 pages, 4 figure
Cross-Domain Labeled LDA for Cross-Domain Text Classification
Cross-domain text classification aims at building a classifier for a target
domain which leverages data from both source and target domain. One promising
idea is to minimize the feature distribution differences of the two domains.
Most existing studies explicitly minimize such differences by an exact
alignment mechanism (aligning features by one-to-one feature alignment,
projection matrix etc.). Such exact alignment, however, will restrict models'
learning ability and will further impair models' performance on classification
tasks when the semantic distributions of different domains are very different.
To address this problem, we propose a novel group alignment which aligns the
semantics at group level. In addition, to help the model learn better semantic
groups and semantics within these groups, we also propose a partial supervision
for model's learning in source domain. To this end, we embed the group
alignment and a partial supervision into a cross-domain topic model, and
propose a Cross-Domain Labeled LDA (CDL-LDA). On the standard 20Newsgroup and
Reuters dataset, extensive quantitative (classification, perplexity etc.) and
qualitative (topic detection) experiments are conducted to show the
effectiveness of the proposed group alignment and partial supervision.Comment: ICDM 201
- …
