564 research outputs found

    Hyperthermia and cardiovascular strain during an extreme heat exposure in young versus older adults

    Get PDF
    We examined whether older individuals experience greater levels of hyperthermia and cardiovascular strain during an extreme heat exposure compared to young adults. During a 3-hour extreme heat exposure (44°C, 30% relative humidity), we compared body heat storage, core temperature (rectal, visceral) and cardiovascular (heart rate, cardiac output, mean arterial pressure, limb blood flow) responses of young adults (n = 30, 19-28 years) against those of older adults (n = 30, 55-73 years). Direct calorimetry measured whole-body evaporative and dry heat exchange. Body heat storage was calculated as the temporal summation of heat production (indirect calorimetry) and whole-body heat loss (direct calorimetry) over the exposure period. While both groups gained a similar amount of heat in the first hour, the older adults showed an attenuated increase in evaporative heat loss (p < 0.033) in the first 30-min. Thereafter, the older adults were unable to compensate for a greater rate of heat gain (11 ± 1 ; p < 0.05) with a corresponding increase in evaporative heat loss. Older adults stored more heat (358 ± 173 kJ) relative to their younger (202 ± 92 kJ; p < 0.001) counterparts at the end of the exposure leading to greater elevations in rectal (p = 0.043) and visceral (p = 0.05) temperatures, albeit not clinically significant (rise < 0.5°C). Older adults experienced a reduction in calf blood flow (p < 0.01) with heat stress, yet no differences in cardiac output, blood pressure or heart rate. We conclude, in healthy habitually active individuals, despite no clinically observable cardiovascular or temperature changes, older adults experience greater heat gain and decreased limb perfusion in response to 3-hour heat exposure

    Genotyping and antibiotic resistance of thermophilic Campylobacter isolated from chicken and pig meat in Vietnam

    Get PDF
    Background Campylobacter species are recognized as the most common cause of foodborne bacterial gastroenteritis in humans. In this study nine Campylobacter strains isolated from chicken meat and pork in Hanoi, Vietnam, were characterized using molecular methods and tested for antibiotic resistance. Results The nine isolates (eight C. jejuni and one C. coli) were identified by multiplex PCR, and tested for the presence or absence of 29 gene loci associated with virulence, lipooligosaccharide (LOS) biosynthesis and further functions. flaA typing, multilocus sequence typing and microarray assay investigation showed a high degree of genetic diversity among these isolates. In all isolates motility genes (flaA, flaB, flhA, fliM), colonization associated genes (cadF, docB), toxin production genes (cdtA, cdtB, secD, secF), and the LOS biosynthesis gene pglB were detected. Eight gene loci (fliY, virB11, Cje1278, Cj1434c, Cj1138, Cj1438c, Cj1440c, Cj1136) could not be detected by PCR. A differing presence of the gene loci ciaB (22.2 %), Cje1280 (77.8 %), docC (66.7 %), and cgtB (55.6 %) was found. iamA, cdtC, and the type 6 secretion system were present in all C. jejuni isolates but not in C. coli. flaA typing resulted in five different genotypes within C. jejuni, MLST classified the isolates into seven sequence types (ST-5155, ST-6736, ST-2837, ST-4395, ST-5799, ST-4099 and ST-860). The microarray assay analysis showed a high genetic diversity within Vietnamese Campylobacter isolates which resulted in eight different types for C. jejuni. Antibiotic susceptibility profiles showed that all isolates were sensitive to gentamicin and most isolates (88.8 %) were sensitive to chloramphenicol, erythromycin and streptomycin. Resistance rates to nalidixic acid, tetracycline and ciprofloxacin were 88.9, 77.8 and 66.7 %, respectively. Conclusions To the best of our knowledge, this study is the first report that shows high genetic diversity and remarkable antibiotic resistance of Campylobacter strains isolated from meat in Vietnam which can be considered of high public health significance. These preliminary data show that large scale screenings are justified to assess the relevance of Campylobacter infections on human health in Vietnam

    Antimicrobial resistance of Campylobacter isolates from small scale and backyard chicken in Kenya

    Get PDF
    Background Thermophilic Campylobacter species are a major cause of bacterial foodborne diarrhoea in humans worldwide. Poultry and their products are the predominant source for human campylobacteriosis. Resistance of Campylobacter to antibiotics is increasing worldwide, but little is known about the antibiotic resistance in Campylobacter isolated from chicken in Kenya. In this study, 35 suspected Campylobacter strains isolated from faeces and cloacal swabs of chicken were tested for their susceptibility to seven antibiotics using a broth microdilution assay and molecular biological investigations. Results Overall, DNA of thermophilic Campylobacter was identified in 53 samples by PCR (34 C. jejuni, 18 C. coli and one mix of both species) but only 35 Campylobacter isolates (31 C. jejuni and 4 C. coli) could be re-cultivated after transportation to Germany. Isolates were tested for their susceptibility to antibiotics using a broth microdilution assay. Additionally, molecular biological detection of antibiotic resistance genes was carried out. C. jejuni isolates showed a high rate of resistance to nalidixic acid, tetracycline and ciprofloxacin of 77.4, 71.0 and 71.0 %, respectively. Low resistance (25.8 %) was detected for gentamicin and chloramphenicol. Multidrug resistance in C. jejuni could be detected in 19 (61.3 %) isolates. Resistance pattern of C. coli isolates was comparable. Resistance to ciprofloxacin was confirmed by MAMA–PCR and PCR–RFLP in all phenotypically resistant isolates. The tet(O) gene was detected only in 54.5 % of tetracycline resistant C. jejuni isolates. The tet(A) gene, which is also responsible for tetracycline resistance, was found in 90.3 % of C. jejuni and in all C. coli isolates. Thirteen phenotypically erythromycin-resistant isolates could not be characterised by using PCR–RFLP and MAMA–PCR. Conclusions To the best of our knowledge, this study is the first report about resistance to antibiotics in thermophilic Campylobacter originating from chicken in Kenya. Campylobacter spp. show a high level of resistance to ciprofloxacin, nalidixic acid and tetracycline but also a remarkable one to chloramphenicol and gentamicin and they are multidrug resistant. Resistance to antibiotics is a global public health concern. In Kenya, resistance surveillance needs further attention in the future. Efforts to establish at least a National Laboratory with facilities for performing phenotypic and genotypic characterization of thermophilic Campylobacter is highly recommended

    Проблемы увеличения продуктивности АПК в Украине и пути повышения его потенциала

    Get PDF
    Целью статьи является изучение причин снижения показателей продуктивности в агропромышленном комплексе и путей повышения продуктивности сельскохозяйственных культур

    Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    Get PDF
    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a midsized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health

    A revised ammonoid biostratigraphy for the Aptian of NW Africa:Essaouira-Agadir Basin, Morocco

    Get PDF
    International audienceA revised ammonoid biostratigraphy is presented for the Aptian of NW Africa, Essaouira-Agadir Basin (EAB), Morocco, based on detailed analysis of 5 key sections. A number of bio-events are documented and 26 genus and 43 species fully documented, forming the largest published Aptian ammonite collection made from NW Africa. The section at Tiskatine is documented as the type section, and 8 zones and subzones are defined, of which 5 are new. This work allows correlation of the Aptian of the EAB to the Standard Mediterranean Ammonite Scale (SMAS). Two main hiatuses are identified at the scale of the basin scale: a major one that includes most of the lower Aptian and the base of the upper Aptian and a second one encompass the top of the upper Aptian and the base of the lower Albian. The ammonite fauna displays a clear Tethyan palaeobiogeographic character affected by a fairly high degree of endemism at the genus and species level. The new genus and species Elsaisabellia tiskatinensis is introduced.(C) 2017 Elsevier Ltd. All rights reserved

    Global profiling of co- and post-translationally N-myristoylated proteomes in human cells

    Get PDF
    Protein N-myristoylation is a ubiquitous co- and post-translational modification that has been implicated in the development and progression of a range of human diseases. Here, we report the global N-myristoylated proteome in human cells determined using quantitative chemical proteomics combined with potent and specific human N-myristoyltransferase (NMT) inhibition. Global quantification of N-myristoylation during normal growth or apoptosis allowed the identification of >100 N-myristoylated proteins, >95% of which are identified for the first time at endogenous levels. Furthermore, quantitative dose response for inhibition of N-myristoylation is determined for >70 substrates simultaneously across the proteome. Small-molecule inhibition through a conserved substrate-binding pocket is also demonstrated by solving the crystal structures of inhibitor-bound NMT1 and NMT2. The presented data substantially expand the known repertoire of co- and post-translational N-myristoylation in addition to validating tools for the pharmacological inhibition of NMT in living cells

    Extended Remediation of Sleep Deprived-Induced Working Memory Deficits Using fMRI-Guided Transcranial Magnetic Stimulation

    Get PDF
    STUDY OBJECTIVES: We attempted to prevent the development of working memory (WM) impairments caused by sleep deprivation using fMRI-guided repetitive transcranial magnetic stimulation (rTMS). Novel aspects of our fMRI-guided rTMS paradigm included the use of sophisticated covariance methods to identify functional networks in imaging data, and the use of fMRI-targeted rTMS concurrent with task performance to modulate plasticity effects over a longer term. DESIGN: Between-groups mixed model. SETTING: TMS, MRI, and sleep laboratory study. PARTICIPANTS: 27 subjects (13 receiving Active rTMS, and 14 Sham) completed the sleep deprivation protocol, with another 21 (10 Active, 11 Sham) non-sleep deprived subjects run in a second experiment. INTERVENTIONS: Our previous covariance analysis had identified a network, including occipital cortex, which demonstrated individual differences in resilience to the deleterious effects of sleep deprivation on WM performance. Five Hz rTMS was applied to left lateral occipital cortex while subjects performed a WM task during 4 sessions over the course of 2 days of total sleep deprivation. MEASUREMENTS AND RESULTS: At the end of the sleep deprivation period, Sham sleep deprived subjects exhibited degraded performance in the WM task. In contrast, those receiving Active rTMS did not show the slowing and lapsing typical in sleep deprivation, and instead performed similarly to non- sleep deprived subjects. Importantly, the Active sleep deprivation group showed rTMS-induced facilitation of WM performance a full 18 hours after the last rTMS session. CONCLUSIONS: Over the course of sleep deprivation, these results indicate that rTMS applied concurrently with WM task performance affected neural circuitry involved in WM to prevent its full impact
    corecore