1,482 research outputs found
Finding Galaxy Clusters using Voronoi Tessellations
We present an objective and automated procedure for detecting clusters of
galaxies in imaging galaxy surveys. Our Voronoi Galaxy Cluster Finder (VGCF)
uses galaxy positions and magnitudes to find clusters and determine their main
features: size, richness and contrast above the background. The VGCF uses the
Voronoi tessellation to evaluate the local density and to identify clusters as
significative density fluctuations above the background. The significance
threshold needs to be set by the user, but experimenting with different choices
is very easy since it does not require a whole new run of the algorithm. The
VGCF is non-parametric and does not smooth the data. As a consequence, clusters
are identified irrispective of their shape and their identification is only
slightly affected by border effects and by holes in the galaxy distribution on
the sky. The algorithm is fast, and automatically assigns members to
structures.Comment: 11 pages, 11 figures. It uses aa.cls (included). Accepted by A&
A semi-parametric approach to estimate risk functions associated with multi-dimensional exposure profiles: application to smoking and lung cancer
A common characteristic of environmental epidemiology is the multi-dimensional aspect of exposure patterns, frequently reduced to a cumulative exposure for simplicity of analysis. By adopting a flexible Bayesian clustering approach, we explore the risk function linking exposure history to disease. This approach is applied here to study the relationship between different smoking characteristics and lung cancer in the framework of a population based case control study
On generalized cluster algorithms for frustrated spin models
Standard Monte Carlo cluster algorithms have proven to be very effective for
many different spin models, however they fail for frustrated spin systems.
Recently a generalized cluster algorithm was introduced that works extremely
well for the fully frustrated Ising model on a square lattice, by placing bonds
between sites based on information from plaquettes rather than links of the
lattice. Here we study some properties of this algorithm and some variants of
it. We introduce a practical methodology for constructing a generalized cluster
algorithm for a given spin model, and investigate apply this method to some
other frustrated Ising models. We find that such algorithms work well for
simple fully frustrated Ising models in two dimensions, but appear to work
poorly or not at all for more complex models such as spin glasses.Comment: 34 pages in RevTeX. No figures included. A compressed postscript file
for the paper with figures can be obtained via anonymous ftp to
minerva.npac.syr.edu in users/paulc/papers/SCCS-527.ps.Z. Syracuse University
NPAC technical report SCCS-52
Comment on ``Antiferromagnetic Potts Models''
We show that the Wang-Swendsen-Koteck\'y algorithm for antiferromagnetic -state Potts models is nonergodic at zero temperature for on periodic lattices where are relatively prime. For and/or other lattice sizes or boundary conditions, the ergodicity at zero temperature is an open question
Alignment of Brightest Cluster Galaxies with their Host Clusters
We examine the alignment between Brightest Cluster Galaxies (BCGs) and their
host clusters in a sample of 7031 clusters with 0.08<z<0.44 found using a
matched-filter algorithm and an independent sample of 5744 clusters with
0.1<z<0.3 selected with the maxBCG algorithm, both extracted from the Sloan
Digital Sky Survey Data Release 6 imaging data. We confirm that BCGs are
preferentially aligned with the cluster's major axis; clusters with dominant
BCGs (>0.65 mag brighter than the mean of the second and third ranked galaxies)
show stronger alignment than do clusters with less dominant BCGs at the 4.4
sigma level. Rich clusters show a stronger alignment than do poor clusters at
the 2.3 sigma level. Low redshift clusters (z<0.26) show more alignment than do
high redshift (z>0.26) clusters, with a difference significant at the 3.0 sigma
level. Our results do not depend on the algorithm used to select the cluster
sample, suggesting that they are not biased by systematics of either algorithm.
The correlation between BCG dominance and cluster alignment may be a
consequence of the hierarchical merging process which forms the cluster. The
observed redshift evolution may follow from secondary infall at late redshifts.Comment: 15 pages, 12 Figures, 10 Tables, Accepted for publication in MNRA
Multimodality of rich clusters from the SDSS DR8 within the supercluster-void network
We study the relations between the multimodality of galaxy clusters drawn
from the SDSS DR8 and the environment where they reside. As cluster environment
we consider the global luminosity density field, supercluster membership, and
supercluster morphology. We use 3D normal mixture modelling, the
Dressler-Shectman test, and the peculiar velocity of cluster main galaxies as
signatures of multimodality of clusters. We calculate the luminosity density
field to study the environmental densities around clusters, and to find
superclusters where clusters reside. We determine the morphology of
superclusters with the Minkowski functionals and compare the properties of
clusters in superclusters of different morphology. We apply principal component
analysis to study the relations between the multimodality parametres of
clusters and their environment simultaneously. We find that multimodal clusters
reside in higher density environment than unimodal clusters. Clusters in
superclusters have higher probability to have substructure than isolated
clusters. The superclusters can be divided into two main morphological types,
spiders and filaments. Clusters in superclusters of spider morphology have
higher probabilities to have substructure and larger peculiar velocities of
their main galaxies than clusters in superclusters of filament morphology. The
most luminous clusters are located in the high-density cores of rich
superclusters. Five of seven most luminous clusters, and five of seven most
multimodal clusters reside in spider-type superclusters; four of seven most
unimodal clusters reside in filament-type superclusters. Our study shows the
importance of the role of superclusters as high density environment which
affects the properties of galaxy systems in them.Comment: 16 pages, 12 figures, 2 online tables, accepted for publication in
Astronomy and Astrophysic
The Impact of Blockchain on the Credit Risk of Supply Chain Finance: A Tripartite Evolutionary Game Analysis
Palatini formulation of the modified gravity with an additionally squared scalar curvature term
In this paper by deriving the Modified Friedmann equation in the Palatini
formulation of gravity, first we discuss the problem of whether in
Palatini formulation an additional term in Einstein's General Relativity
action can drive an inflation. We show that the Palatini formulation of
gravity cannot lead to the gravity-driven inflation as in the metric formalism.
If considering no zero radiation and matter energy densities, we obtain that
only under rather restrictive assumption about the radiation and matter energy
densities there will be a mild power-law inflation , which is
obviously different from the original vacuum energy-like driven inflation. Then
we demonstrate that in the Palatini formulation of a more generally modified
gravity, i.e., the model that intends to explain both the current
cosmic acceleration and early time inflation, accelerating cosmic expansion
achieved at late Universe evolution times under the model parameters satisfying
.Comment: 14 pages, accepted for publication by CQ
Recommended from our members
An assessment of aerosol‐cloud interactions in marine stratus clouds based on surface remote sensing
An assessment of aerosol-cloud interactions (ACI) from ground-based remote sensing under coastal stratiform clouds is presented. The assessment utilizes a long-term, high temporal resolution data set from the Atmospheric Radiation Measurement (ARM) Program deployment at Pt. Reyes, California, United States, in 2005 to provide statistically robust measures of ACI and to characterize the variability of the measures based on variability in environmental conditions and observational approaches. The average ACIN (= dlnNd/dlna, the change in cloud drop number concentration with aerosol concentration) is 0.48, within a physically plausible range of 0–1.0. Values vary between 0.18 and 0.69 with dependence on (1) the assumption of constant cloud liquid water path (LWP), (2) the relative value of cloud LWP, (3) methods for retrieving Nd, (4) aerosol size distribution, (5) updraft velocity, and (6) the scale and resolution of observations. The sensitivity of the local, diurnally averaged radiative forcing to this variability in ACIN values, assuming an aerosol perturbation of 500 c-3 relative to a background concentration of 100 cm-3, ranges betwee-4 and -9 W -2. Further characterization of ACI and its variability is required to reduce uncertainties in global radiative forcing estimates
- …
