1,482 research outputs found

    Finding Galaxy Clusters using Voronoi Tessellations

    Get PDF
    We present an objective and automated procedure for detecting clusters of galaxies in imaging galaxy surveys. Our Voronoi Galaxy Cluster Finder (VGCF) uses galaxy positions and magnitudes to find clusters and determine their main features: size, richness and contrast above the background. The VGCF uses the Voronoi tessellation to evaluate the local density and to identify clusters as significative density fluctuations above the background. The significance threshold needs to be set by the user, but experimenting with different choices is very easy since it does not require a whole new run of the algorithm. The VGCF is non-parametric and does not smooth the data. As a consequence, clusters are identified irrispective of their shape and their identification is only slightly affected by border effects and by holes in the galaxy distribution on the sky. The algorithm is fast, and automatically assigns members to structures.Comment: 11 pages, 11 figures. It uses aa.cls (included). Accepted by A&

    A semi-parametric approach to estimate risk functions associated with multi-dimensional exposure profiles: application to smoking and lung cancer

    Get PDF
    A common characteristic of environmental epidemiology is the multi-dimensional aspect of exposure patterns, frequently reduced to a cumulative exposure for simplicity of analysis. By adopting a flexible Bayesian clustering approach, we explore the risk function linking exposure history to disease. This approach is applied here to study the relationship between different smoking characteristics and lung cancer in the framework of a population based case control study

    On generalized cluster algorithms for frustrated spin models

    Full text link
    Standard Monte Carlo cluster algorithms have proven to be very effective for many different spin models, however they fail for frustrated spin systems. Recently a generalized cluster algorithm was introduced that works extremely well for the fully frustrated Ising model on a square lattice, by placing bonds between sites based on information from plaquettes rather than links of the lattice. Here we study some properties of this algorithm and some variants of it. We introduce a practical methodology for constructing a generalized cluster algorithm for a given spin model, and investigate apply this method to some other frustrated Ising models. We find that such algorithms work well for simple fully frustrated Ising models in two dimensions, but appear to work poorly or not at all for more complex models such as spin glasses.Comment: 34 pages in RevTeX. No figures included. A compressed postscript file for the paper with figures can be obtained via anonymous ftp to minerva.npac.syr.edu in users/paulc/papers/SCCS-527.ps.Z. Syracuse University NPAC technical report SCCS-52

    Comment on ``Antiferromagnetic Potts Models''

    Get PDF
    We show that the Wang-Swendsen-Koteck\'y algorithm for antiferromagnetic qq-state Potts models is nonergodic at zero temperature for q=3q=3 on periodic 3m×3n3m \times 3n lattices where m,nm,n are relatively prime. For q4q \ge 4 and/or other lattice sizes or boundary conditions, the ergodicity at zero temperature is an open question

    Alignment of Brightest Cluster Galaxies with their Host Clusters

    Full text link
    We examine the alignment between Brightest Cluster Galaxies (BCGs) and their host clusters in a sample of 7031 clusters with 0.08<z<0.44 found using a matched-filter algorithm and an independent sample of 5744 clusters with 0.1<z<0.3 selected with the maxBCG algorithm, both extracted from the Sloan Digital Sky Survey Data Release 6 imaging data. We confirm that BCGs are preferentially aligned with the cluster's major axis; clusters with dominant BCGs (>0.65 mag brighter than the mean of the second and third ranked galaxies) show stronger alignment than do clusters with less dominant BCGs at the 4.4 sigma level. Rich clusters show a stronger alignment than do poor clusters at the 2.3 sigma level. Low redshift clusters (z<0.26) show more alignment than do high redshift (z>0.26) clusters, with a difference significant at the 3.0 sigma level. Our results do not depend on the algorithm used to select the cluster sample, suggesting that they are not biased by systematics of either algorithm. The correlation between BCG dominance and cluster alignment may be a consequence of the hierarchical merging process which forms the cluster. The observed redshift evolution may follow from secondary infall at late redshifts.Comment: 15 pages, 12 Figures, 10 Tables, Accepted for publication in MNRA

    Multimodality of rich clusters from the SDSS DR8 within the supercluster-void network

    Full text link
    We study the relations between the multimodality of galaxy clusters drawn from the SDSS DR8 and the environment where they reside. As cluster environment we consider the global luminosity density field, supercluster membership, and supercluster morphology. We use 3D normal mixture modelling, the Dressler-Shectman test, and the peculiar velocity of cluster main galaxies as signatures of multimodality of clusters. We calculate the luminosity density field to study the environmental densities around clusters, and to find superclusters where clusters reside. We determine the morphology of superclusters with the Minkowski functionals and compare the properties of clusters in superclusters of different morphology. We apply principal component analysis to study the relations between the multimodality parametres of clusters and their environment simultaneously. We find that multimodal clusters reside in higher density environment than unimodal clusters. Clusters in superclusters have higher probability to have substructure than isolated clusters. The superclusters can be divided into two main morphological types, spiders and filaments. Clusters in superclusters of spider morphology have higher probabilities to have substructure and larger peculiar velocities of their main galaxies than clusters in superclusters of filament morphology. The most luminous clusters are located in the high-density cores of rich superclusters. Five of seven most luminous clusters, and five of seven most multimodal clusters reside in spider-type superclusters; four of seven most unimodal clusters reside in filament-type superclusters. Our study shows the importance of the role of superclusters as high density environment which affects the properties of galaxy systems in them.Comment: 16 pages, 12 figures, 2 online tables, accepted for publication in Astronomy and Astrophysic

    Palatini formulation of the R1R^{-1}modified gravity with an additionally squared scalar curvature term

    Full text link
    In this paper by deriving the Modified Friedmann equation in the Palatini formulation of R2R^2 gravity, first we discuss the problem of whether in Palatini formulation an additional R2R^2 term in Einstein's General Relativity action can drive an inflation. We show that the Palatini formulation of R2R^2 gravity cannot lead to the gravity-driven inflation as in the metric formalism. If considering no zero radiation and matter energy densities, we obtain that only under rather restrictive assumption about the radiation and matter energy densities there will be a mild power-law inflation a(t)t2a(t)\sim t^2, which is obviously different from the original vacuum energy-like driven inflation. Then we demonstrate that in the Palatini formulation of a more generally modified gravity, i.e., the 1/R+R21/R+R^2 model that intends to explain both the current cosmic acceleration and early time inflation, accelerating cosmic expansion achieved at late Universe evolution times under the model parameters satisfying αβ\alpha\ll\beta.Comment: 14 pages, accepted for publication by CQ
    corecore