54 research outputs found

    Galactic Edge Clouds I: Molecular Line Observations and Chemical Modelling of Edge Cloud 2

    Full text link
    Edge Cloud 2 (EC2) is a molecular cloud, about 35 pc in size, with one of the largest galactocentric distances known to exist in the Milky Way. We present observations of a peak CO emission region in the cloud and use these to determine its physical characteristics. We calculate a gas temperature of 20 K and a density of n(H2) ~ 10^4 cm^-3. Based on our CO maps, we estimate the mass of EC2 at around 10^4 M_sun and continuum observations suggest a dust-to-gas mass ratio as low as 0.001. Chemical models have been developed to reproduce the abundances in EC2 and they indicate that: heavy element abundances may be reduced by a factor of five relative to the solar neighbourhood (similar to dwarf irregular galaxies and damped Lyman alpha systems); very low extinction (Av < 4 mag) due to a very low dust-to-gas ratio; an enhanced cosmic ray ionisation rate; and a higher UV field compared to local interstellar values. The reduced abundances may be attributed to the low level of star formation in this region and are probably also related to the continuing infall of primordial (or low metallicity) halo gas since the Milky Way formed. Finally, we note that shocks from the old supernova remnant GSH 138-01-94 may have determined the morphology and dynamics of EC2.Comment: Accepted by ApJ 7 August 2007. 29 pages, 9 figures, 10 tables. PMR now at NRAO, Green Bank, WV, USA. TJM now at Queen's University Belfast, UK. GB now at Yale University, CT, US

    Short Lifetime of Protoplanetary Disks in Low-metallicity Environments

    Full text link
    We studied near-infrared disk fractions of six young clusters in the low-metallicity environments with [O/H]0.7] \sim -0.7 using deep JHKJHK images with Subaru 8.2\,m telescope. We found that disk fraction of the low-metallicity clusters declines rapidly in <<1\,Myr, which is much faster than the \sim5--7\,Myr observed for the solar-metallicity clusters, suggesting that disk lifetime shortens with decreasing metallicity possibly with an \sim10Z10^Z dependence. Since the shorter disk lifetime reduces the time available for planet formation, this could be one of the major reasons for the strong planet--metallicity correlation. Although more quantitative observational and theoretical assessments are necessary, our results present the first direct observational evidence that can contribute to explaining the planet--metallicity correlation.Comment: 5 pages, 1 figure, and 2 tables. Accepted for publication in The Astrophysical Journal Letter

    Stochastic processes, galactic star formation, and chemical evolution. Effects of accretion, stripping, and collisions in multiphase multi-zone models

    Get PDF
    This paper reports simulations allowing for stochastic accretion and mass loss within closed and open systems modeled using a previously developed multi-population, multi-zone (halo, thick disk, thin disk) treatment. The star formation rate is computed as a function of time directly from the model equations and all chemical evolution is followed without instantaneous recycling. Several types of simulations are presented here: (1) a closed system with bursty mass loss from the halo to the thick disk, and from the thick to the thin disk, in separate events to the thin disk; (2) open systems with random environmental (extragalactic) accretion, e.g. by infall of high velocity clouds directly to the thin disk; (3) schematic open system single and multiple collision events and intracluster stripping. For the open models, the mass of the Galaxy has been explicitly tracked with time. We present the evolution of the star formation rate, metallicity histories, and concentrate on the light elements. We find a wide range of possible outcomes, including an explanation for variations in the Galactic D/H ratio, and highlight the problems for uniquely reconstructing star forming histories from contemporary abundance measurements.Comment: 12 pages, 12 Postscript figures, uses A&A style macros. Accepted for publication by Astronomy & Astrophysic

    Herschel observations of deuterated water towards Sgr B2(M)

    Get PDF
    Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes -- grain surfaces versus energetic process in the gas phase, e.g. in shocks. The HIFI observations of multiple transitions of HDO in Sgr~B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance (2.5×10112.5\times 10^{-11}) in the outer envelope at temperatures below 100~K through a medium abundance (1.5×1091.5\times 10^{-9}) in the inner envelope/outer core, at temperatures between 100 and 200~K, and finally a high abundance (3.5×1093.5\times 10^{-9}) at temperatures above 200~K in the hot core.Comment: A&A HIFI special issue, accepte

    Stellar Populations in the Galactic Center

    Full text link
    We discuss the stellar content of the Galactic Center, and in particular, recent estimates of the star formation rate (SFR). We discuss pros and cons of the different stellar tracers and focus our attention on the SFR based on the three classical Cepheids recently discovered in the Galactic Center. We also discuss stellar populations in field and cluster stars and present some preliminary results based on near-infrared photometry of a field centered on the young massive cluster Arches. We also provide a new estimate of the true distance modulus to the Galactic Center and we found 14.49±\pm0.02(standard)±\pm0.10(systematic) mag (7.91±0.08±0.40\pm0.08\pm0.40 kpc). Current estimate agrees quite well with similar photometric and kinematic distance determinations available in the literature. We also discuss the metallicity gradient of the thin disk and the sharp change in the slope when moving across the edge of the inner disk, the Galactic Bar and the Galactic Center. The difference becomes even more compelling if we take into account that metal abundances are based on young stellar tracers (classical Cepheids, Red Supergiants, Luminous Blue Variables). Finally, we briefly outline the possible mechanisms that might account for current empirical evidence.Comment: To be published in the Astrophysics and Space Science Proceeding

    Origin and evolution of the light nuclides

    Get PDF
    After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin and evolution of the light nuclides D, He-3, He-4, Li-6, Li-7, Be-9, B-10 and B-11. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of He-3 abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed Be and B evolution as primaries suggests that the source composition of cosmic rays has remained quasi-constant since the early days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties. The best explanation for the mismatch between primordial Li and the observed "Spite-plateau" in halo stars appears to be depletion of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently discovered early ``Li-6 plateau'', which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis.Comment: 18 pages, 9 figs. Invited Review in "Symposium on the Composition of Matter", honoring Johannes Geiss on the occasion of his 80th birthday (Grindelwald, Switzerland, Sept. 2006), to be published in Space Science Series of ISS

    A simple model for the evolution of disc galaxies: The Milky Way

    Full text link
    A simple model for the evolution of disc galaxies is presented. We adopt three numbers from observations of the Milky Way disc, the local surface mass density, the stellar scale length (of the assumedly exponential disc) and the amplitude of the (assumedly flat) rotation curve, and physically, the (local) dynamical Kennicutt star formation prescription, standard chemical evolution equations assuming and a model for spectral evolution of stellar populations. We can determine the detailed evolution of the model with only the addition of standard cosmological scalings with time of the dimensional parameters. A surprising wealth of detailed specifications follows from this prescription including the gaseous infall rate as a function of radius and time, the distribution of stellar ages and metallicities with time and radius, surface brightness profiles at different wavelengths, colours etc. At the solar neighbourhood stars start to form 10Gyrs\approx 10 Gyrs ago at an increasing rate peaking 4 billion years ago and then slowly declining in good agreement with observations. The mean age of long lived stars at the solar neighbourhood is about 4Gyrs4 Gyrs. The local surface density of the stars and gas are 35 and 15Mpc215 M_{\odot}pc^{-2}, respectively. The metallicity distribution of the stars at the solar radius is narrow with a peak at [Z/Z]=0.1[Z/Z_{\odot}] = -0.1.Both a Salpeter IMF and a Chabrier IMF are consistent with observations. Comparisons with the current and local fossil evidence provides support for the model which can then be used to assess other local disc galaxies, the evolution of disc galaxies in deep optical surveys and also for theoretical investigations such as simulations of merging disc galaxies (abbreviated).Comment: acceppted for publication in MNRA

    A search for localized sources of noncosmological deuterium near the Galactic center

    Get PDF
    The VLA at the 92 cm D I hyperfine transition was used to search for a possible localized concentration of atomic deuterium near the Galactic center over a velocity range of + or - 180 km/s. The search yielded an upper limit for the D column density N(D) = 7.78 × 10 to the 16th T(s)/sq cm where T(s) is the spin temperature of the D I hyperfine lines. For the smaller velocity range of + or - 30 km/s, a more sensitive upper limit of N(D) = 3.12 × 10 to the 16th T(s)/sq cm is obtained. If D is associated with the H I clouds to the Galactic center, an upper limit for the D/H ratio of 0.0043 is obtained for the clouds at V = 20 km/s and 50 km/s. If a significant fraction of the D exists in atomic form in molecular clouds, the upper limits are 1.2 × 10 to the -7th for the V = 20 km/s molecular cloud near the Galactic center and 8.3 × 10 to the -7th for the V = 50 km/s molecular cloud near the Galactic center. These results are consistent with the D observed in the Galactic center and the ISM being primarily cosmological in origin

    The Lifetime of Protoplanetary Disks in a Low-Metallicity Environment

    Full text link
    The extreme outer Galaxy (EOG), the region with a Galactic radius of more than 18 kpc, is known to have very low metallicity, about one-tenth that of the solar neighborhood. We obtained deep near-infrared (NIR) images of two very young (\sim0.5 Myr) star-forming clusters that are one of the most distant embedded clusters in the EOG. We find that in both clusters the fraction of stars with NIR excess, which originates from the circumstellar dust disk at radii of \leq0.1 AU, is significantly lower than those in the solar neighborhood. Our results suggest that most stars forming in the low-metallicity environment experience disk dispersal at an earlier stage (<<1 Myr) than those forming in the solar metallicity environment (as much as \sim5--6 Myr). Such rapid disk dispersal may make the formation of planets difficult, and the shorter disk lifetime with lower metallicity could contribute to the strong metallicity dependence of the well-known "planet-metallicity correlation", which states the probability of a star hosting a planet increases steeply with stellar metallicity. The reason for the rapid disk dispersal could be increase of the mass accretion rate and/or the effective far-ultraviolet photoevaporation due to the low extinction; however, another unknown mechanism for the EOG environment could be contributing significantly.Comment: 27 pages, 7 figures, Accepted for publication in The Astrophysical Journa
    corecore