215,184 research outputs found
A high resolution spatiotemporal model for in-vehicle black carbon exposure : quantifying the in-vehicle exposure reduction due to the Euro 5 particulate matter standard legislation
Several studies have shown that a significant amount of daily air pollution exposure is inhaled during trips. In this study, car drivers assessed their own black carbon exposure under real-life conditions (223 h of data from 2013). The spatiotemporal exposure of the car drivers is modeled using a data science approach, referred to as microscopic land-use regression (mu LUR). In-vehicle exposure is highly dynamical and is strongly related to the local traffic dynamics. An extensive set of potential covariates was used to model the in-vehicle black carbon exposure in a temporal resolution of 10 s. Traffic was retrieved directly from traffic databases and indirectly by attributing the trips through a noise map as an alternative traffic source. Modeling by generalized additive models (GAM) shows non-linear effects for meteorology and diurnal traffic patterns. A fitted diurnal pattern explains indirectly the complex diurnal variability of the exposure due to the non-linear interaction between traffic density and distance to the preceding vehicles. Comparing the strength of direct traffic attribution and indirect noise map-based traffic attribution reveals the potential of noise maps as a proxy for traffic-related air pollution exposure. An external validation, based on a dataset gathered in 2010-2011, quantifies the exposure reduction inside the vehicles at 33% (mean) and 50% (median). The EU PM Euro 5 PM emission standard (in force since 2009) explains the largest part of the discrepancy between the measurement campaign in 2013 and the validation dataset. The mu LUR methodology provides a high resolution, route-sensitive, seasonal and meteorology-sensitive personal exposure estimate for epidemiologists and policy makers
Guidelines for participatory noise sensing based on analysis of high quality mobile noise measurements
Noise based microscopic land-use regression model resolves the instantaneous personal exposure to Black Carbon
Spatiotemporal activity based and route sensitive air pollution indicators for epidemiologists
Energy losses by gravitational radiation in inspiralling compact binaries to five halves post-Newtonian order
This paper derives the total power or energy loss rate generated in the form
of gravitational waves by an inspiralling compact binary system to the five
halves post-Newtonian (2.5PN) approximation of general relativity. Extending a
recently developed gravitational-wave generation formalism valid for arbitrary
(slowly-moving) systems, we compute the mass multipole moments of the system
and the relevant tails present in the wave zone to 2.5PN order. In the case of
two point-masses moving on a quasi-circular orbit, we find that the 2.5PN
contribution in the energy loss rate is entirely due to tails. Relying on an
energy balance argument we derive the laws of variation of the instantaneous
frequency and phase of the binary. The 2.5PN order in the accumulated phase is
significantly large, being grossly of the same order of magnitude as the
previous 2PN order, but opposite in sign. However finite mass effects at 2.5PN
order are small. The results of this paper should be useful when analyzing the
data from inspiralling compact binaries in future gravitational-wave detectors
like VIRGO and LIGO.Comment: 39 pages, version which includes the correction of an Erratum to be
published in Phys. Rev. D (2005
On the accuracy of the post-Newtonian approximation
We apply standard post-Newtonian methods in general relativity to locate the
innermost circular orbit (ICO) of irrotational and corotational binary
black-hole systems. We find that the post-Newtonian series converges well when
the two masses are comparable. We argue that the result for the ICO which is
predicted by the third post-Newtonian (3PN) approximation is likely to be very
close to the ``exact'' solution, within 1% of fractional accuracy or better.
The 3PN result is also in remarkable agreement with a numerical calculation of
the ICO in the case of two corotating black holes moving on exactly circular
orbits. The behaviour of the post-Newtonian series suggests that the
gravitational dynamics of two bodies of comparable masses does not resemble
that of a test particle on a Schwarzschild background. This leads us to
question the validity of some post-Newtonian resummation techniques that are
based on the idea that the field generated by two black holes is a deformation
of the Schwarzschild space-time.Comment: 20 pages, in "2001: a relativistic spacetime odyssey", Proc. of the
25th Johns Hopkins Workshop, I. Ciufolini, D. Dominici and L. Lusanna (eds.),
World Scientific, p. 411 (2001
- …
