831 research outputs found

    A First-Principles Approach to Insulators in Finite Electric Fields

    Full text link
    We describe a method for computing the response of an insulator to a static, homogeneous electric field. It consists of iteratively minimizing an electric enthalpy functional expressed in terms of occupied Bloch-like states on a uniform grid of k points. The functional has equivalent local minima below a critical field E_c that depends inversely on the density of k points; the disappearance of the minima at E_c signals the onset of Zener breakdown. We illustrate the procedure by computing the piezoelectric and nonlinear dielectric susceptibility tensors of III-V semiconductors.Comment: 4 pages, with 1 postscript figure embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/is_ef/index.htm

    Enhancement of piezoelectricity in a mixed ferroelectric

    Full text link
    We use first-principles density-functional total energy and polarization calculations to calculate the piezoelectric tensor at zero temperature for both cubic and simple tetragonal ordered supercells of Pb_3GeTe_4. The largest piezoelectric coefficient for the tetragonal configuration is enhanced by a factor of about three with respect to that of the cubic configuration. This can be attributed to both the larger strain-induced motion of cations relative to anions and higher Born effective charges in the tetragonal case. A normal mode decomposition shows that both cation ordering and local relaxation weaken the ferroelectric instability, enhancing piezoelectricity.Comment: 5 pages, revtex, 2 eps figure

    Symmetry breaking and gap opening in two-dimensional hexagonal lattices

    Get PDF
    9 páginas, 3 figuras.-- et al.The inhibition in wave propagation at band gap energies plays a central role in many areas of technology such as electronics (electron gaps), nanophotonics (light gaps) and phononics (acoustic gaps), among others. Here we demonstrate that metal surfaces featuring free-electron-like bands may become semiconducting by periodic nanostructuration. We combine scanning tunneling spectroscopy and angle-resolved photoemisssion to accurately determine the energy-dependent local density of states and band structure of the Ag/Cu(111) noble metal interface patterned with an array of triangular dislocations, demonstrating the existence of a 25 meV band gap that extends over the entire surface Brillouin zone. We prove that this gap is a general consequence of symmetry reduction in close-packed metallic overlayers; in particular, we show that the gap opening is due to the symmetry lowering of the wave vector group at the K point from C3v to C3.This work was supported in part by the Spanish MICINN (MAT2007-66050, MAT2007-63083 and Consolider NanoLight.es), the EU (NMP4-SL-2008-213669-ENSEMBLE), the Basque Government (IT-257-07) and the Centre National de la Recherche Scientifique (CNRS).Peer reviewe

    Vibrational signature of broken chemical order in a GeS2 glass: a molecular dynamics simulation

    Full text link
    Using density functional molecular dynamics simulations, we analyze the broken chemical order in a GeS2_2 glass and its impact on the dynamical properties of the glass through the in-depth study of the vibrational eigenvectors. We find homopolar bonds and the frequencies of the corresponding modes are in agreement with experimental data. Localized S-S modes and 3-fold coordinated sulfur atoms are found to be at the origin of specific Raman peaks whose origin was not previously clear. Through the ring size statistics we find, during the glass formation, a conversion of 3-membered rings into larger units but also into 2-membered rings whose vibrational signature is in agreement with experiments.Comment: 11 pages, 8 figures; to appear in Phys. Rev.

    The physics of dynamical atomic charges: the case of ABO3 compounds

    Full text link
    Based on recent first-principles computations in perovskite compounds, especially BaTiO3, we examine the significance of the Born effective charge concept and contrast it with other atomic charge definitions, either static (Mulliken, Bader...) or dynamical (Callen, Szigeti...). It is shown that static and dynamical charges are not driven by the same underlying parameters. A unified treatment of dynamical charges in periodic solids and large clusters is proposed. The origin of the difference between static and dynamical charges is discussed in terms of local polarizability and delocalized transfers of charge: local models succeed in reproducing anomalous effective charges thanks to large atomic polarizabilities but, in ABO3 compounds, ab initio calculations favor the physical picture based upon transfer of charges. Various results concerning barium and strontium titanates are presented. The origin of anomalous Born effective charges is discussed thanks to a band-by-band decomposition which allows to identify the displacement of the Wannier center of separated bands induced by an atomic displacement. The sensitivity of the Born effective charges to microscopic and macroscopic strains is examined. Finally, we estimate the spontaneous polarization in the four phases of barium titanate.Comment: 25 pages, 6 Figures, 10 Tables, LaTe

    Ab initio Hartree-Fock Born effective charges of LiH, LiF, LiCl, NaF, and NaCl

    Full text link
    We use the Berry-phase-based theory of macroscopic polarization of dielectric crystals formulated in terms of Wannier functions, and state-of-the-art Gaussian basis functions, to obtain benchmark ab initio Hartree-Fock values of the Born effective charges of ionic compounds LiH, LiF, LiCl, NaF, and NaCl. We find excellent agreement with the experimental values for all the compounds except LiCl and NaCl, for which the disagreement with the experiments is close to 10% and 16%, respectively. This may imply the importance of many-body effects in those systems.Comment: 11 pages, Revtex, 2 figures (included), to appear in Phys. Rev. B April 15, 200

    Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration

    Get PDF
    We report room-temperature Raman scattering studies of nominally undoped (100) GaAs1−xBix epitaxial layers exhibiting Biinduced (p-type) longitudinal-optical-plasmon coupled (LOPC) modes for 0.018≤x≤0.048. Redshifts in the GaAs-like optical modes due to alloying are evaluated and are paralleled by strong damping of the LOPC. The relative integrated Raman intensities of LO(Γ) and LOPC ALO/ALOPC are characteristic of heavily doped p-GaAs, with a remarkable near total screening of the LO(Γ) phonon (ALO/ALOPC →0) for larger Bi concentrations. A method of spectral analysis is set out which yields estimates of hole concentrations in excess of 5 × 1017 cm−3 and correlates with the Bi molar fraction. These findings are in general agreement with recent electrical transport measurements performed on the alloy, and while the absolute size of the hole concentrations differ, likely origins for the discrepancy are discussed. We conclude that the damped LO-phonon-hole-plasmon coupling phenomena plays a dominant role in Raman scattering from unpassivated nominally undoped GaAsBi

    Self-Organization and the Physics of Glassy Networks

    Full text link
    Network glasses are the physical prototype for many self-organized systems, ranging from proteins to computer science. Conventional theories of gases, liquids, and crystals do not account for the strongly material-selective character of the glass-forming tendency, the phase diagrams of glasses, or their optimizable properties. A new topological theory, only 25 years old, has succeeded where conventional theories have failed. It shows that (probably all slowly quenched) glasses, including network glasses, are the result of the combined effects of a few simple mechanisms. These glass-forming mechanisms are topological in nature, and have already been identified for several important glasses, including chalcogenide alloys, silicates (window glass, computer chips), and proteins.Comment: One PDF file contains 10 figures and tex

    Формирование городской идентичности как способ развития туристского потенциала г.Томска

    Get PDF
    Следствием глобализации становится унификация современных городов. Происходит нивелирование их уникальных черт: их культурной, социальной и визуальной идентичности. Процесс постепенной утраты уникальности и традиций города неизбежно влечет за собой снижение его привлекательности для туристов. Город, без ярко выраженного "лица": узнаваемого визуального образа и устойчивых смысловых ассоциаций, неизбежно, сдает свои позиции на современном высоко конкурентном рынке туристских услуг.The consequence of globalization is the unification of modern cities. There is a leveling of their unique features: their cultural, social and visual identity. The process of gradual loss of uniqueness and traditions. The city, without a pronounced "face": a recognizable visual image and stable semantic associations, inevitably, surrenders its positions in the modern highly competitive market of tourist services

    Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous-to-crystal transition

    Full text link
    We report on an inelastic (Raman) light scattering study of the local structure of amorphous GeTe films. A detailed analysis of the temperature-reduced Raman spectra has shown that appreciable structural changes occur as a function of temperature. These changes involve modifications of atomic arrangements such as to facilitate the rapid amorphous-to-crystal transformation, which is the major advantage of phase-change materials used in optical data storage media. A particular structural model, supported by polarization analysis, is proposed being compatible with the experimental data as regards both the structure of a-GeTe and the crystallization transition. The remarkable difference between the Raman spectrum of the crystal and the glass can thus naturally be accounted for.Comment: Published in: J. Phys. Condens. Matter. 18, 965-979 (2006
    corecore