21,625 research outputs found

    Quantum phase transition in Bose-Fermi mixtures

    Full text link
    We study a quantum Bose-Fermi mixture near a broad Feshbach resonance at zero temperature. Within a quantum field theoretical model a two-step Gaussian approximation allows to capture the main features of the quantum phase diagram. We show that a repulsive boson-boson interaction is necessary for thermodynamic stability. The quantum phase diagram is mapped in chemical potential and density space, and both first and second order quantum phase transitions are found. We discuss typical characteristics of the first order transition, such as hysteresis or a droplet formation of the condensate which may be searched for experimentally.Comment: 16 pages, 17 figures; typos corrected, one figure adde

    A three-dimensional hydrodynamical line profile analysis of iron lines and barium isotopes in HD140283

    Get PDF
    Heavy-elements, i.e. those beyond the iron peak, mostly form via two neutron capture processes: the s- and r-process. Metal-poor stars should contain fewer isotopes that form via the s-process, according to currently accepted theory. It has been shown in several investigations that theory and observation do not agree well, raising questions on the validity of either the methodology or the theory. We analyse the metal-poor star HD140283, for which we have a high quality spectrum. We test whether a 3D LTE stellar atmosphere and spectrum synthesis code permits a more reliable analysis of the iron abundance and barium isotope ratio than a 1D LTE analysis. Using 3D model atmospheres, we examine 91 iron lines of varying strength and formation depth. This provides us with the star's rotational speed. With this, we model the barium isotope ratio by exploiting the hyperfine structure of the singly ionised 4554 resonance line, and study the impact of the uncertainties in the stellar parameters. HD140283's vsini = 1.65 +/- 0.05 km/s. Barium isotopes under the 3D paradigm show a dominant r-process signature as 77 +/- 6 +/- 17% of barium isotopes form via the r-process, where errors represent the assigned random and systematic errors, respectively. We find that 3D LTE fits reproduce iron line profiles better than those in 1D, but do not provide a unique abundance (within the uncertainties). However, we demonstrate that the isotopic ratio is robust against this shortcoming. Our barium isotope result agrees well with currently accepted theory regarding the formation of the heavy-elements during the early Galaxy. The improved fit to the asymmetric iron line profiles suggests that the current state of 3D LTE modelling provides excellent simulations of fluid flows. However, the abundances they provide are not yet self-consistent. This may improve with NLTE considerations and higher resolution models.Comment: 16 pages, 10 figures, 5 tables. Accepted for publication in A&

    Optomechanical circuits for nanomechanical continuous variable quantum state processing

    Full text link
    We propose and analyze a nanomechanical architecture where light is used to perform linear quantum operations on a set of many vibrational modes. Suitable amplitude modulation of a single laser beam is shown to generate squeezing, entanglement, and state-transfer between modes that are selected according to their mechanical oscillation frequency. Current optomechanical devices based on photonic crystals may provide a platform for realizing this scheme.Comment: 11 pages, 5 figure

    An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres I. Formation of the G-band in metal-poor dwarf stars

    Full text link
    Recent developments in the three-dimensional (3D) spectral synthesis code Linfor3D have meant that, for the first time, large spectral wavelength regions, such as molecular bands, can be synthesised with it in a short amount of time. A detailed spectral analysis of the synthetic G-band for several dwarf turn-off-type 3D atmospheres (5850 <= T_eff [K] <= 6550, 4.0 <= log g <= 4.5, -3.0 <= [Fe/H] <= -1.0) was conducted, under the assumption of local thermodynamic equilibrium. We also examine carbon and oxygen molecule formation at various metallicity regimes and discuss the impact it has on the G-band. Using a qualitative approach, we describe the different behaviours between the 3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the different physics involved inevitably leads to abundance corrections, which differ over varying metallicities. Spectra computed in 1D were fit to every 3D spectrum to determine the 3D abundance correction. Early analysis revealed that the CH molecules that make up the G-band exhibited an oxygen abundance dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen abundances showed zero impact to CH formation. The 3D corrections are also stronger at lower metallicity. Analysis of the 3D corrections to the G-band allows us to assign estimations of the 3D abundance correction to most dwarf stars presented in the literature. The 3D corrections suggest that A(C) in CEMP stars with high A(C) would remain unchanged, but would decrease in CEMP stars with lower A(C). It was found that the C/O ratio is an important parameter to the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally important parameter for OH transitions under 3D. This presents a clear interrelation between the carbon and oxygen abundances in 3D atmospheres through their molecular species, which is not seen in 1D.Comment: 19 pages, 13 figures, 4 tables. Accepted for publication in A&

    Cyber Security Awareness Among College Students

    Get PDF
    This study reports the early results of a study aimed to investigate student awareness and attitudes toward cyber security and the resulting risks in the most advanced technology environment: the Silicon Valley in California, USA. The composition of students in Silicon Valley is very ethnically diverse. The objective was to see how much the students in such a tech-savvy environment are aware of cyber-attacks and how they protect themselves against them. The early statistical analysis suggested that college students, despite their belief that they are observed when using the Internet and that their data is not secure even on university systems, are not very aware of how to protect their data. Also, it appears that educational institutions do not have an active approach to improve awareness among college students to increase their knowledge on these issues and how to protect themselves from potential cyber-attacks, such as identity theft or ransomware

    3D Model Atmospheres for Extremely Low-Mass White Dwarfs

    Get PDF
    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering Teff = 6000-11,500 K and logg = 5-6.5 (cgs units) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., logg = 5-9). For low-mass WDs, the correction in temperature is relatively small (a few per cent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + milli-second pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.Comment: 11 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Catastrophic regime shifts in model ecological communities are true phase transitions

    Get PDF
    Ecosystems often undergo abrupt regime shifts in response to gradual external changes. These shifts are theoretically understood as a regime switch between alternative stable states of the ecosystem dynamical response to smooth changes in external conditions. Usual models introduce nonlinearities in the macroscopic dynamics of the ecosystem that lead to different stable attractors among which the shift takes place. Here we propose an alternative explanation of catastrophic regime shifts based on a recent model that pictures ecological communities as systems in continuous fluctuation, according to certain transition probabilities, between different micro-states in the phase space of viable communities. We introduce a spontaneous extinction rate that accounts for gradual changes in external conditions, and upon variations on this control parameter the system undergoes a regime shift with similar features to those previously reported. Under our microscopic viewpoint we recover the main results obtained in previous theoretical and empirical work (anomalous variance, hysteresis cycles, trophic cascades). The model predicts a gradual loss of species in trophic levels from bottom to top near the transition. But more importantly, the spectral analysis of the transition probability matrix allows us to rigorously establish that we are observing the fingerprints, in a finite size system, of a true phase transition driven by background extinctions.Comment: 19 pages, 11 figures, revised versio

    The Three-Nucleon System Near the N-d Threshold

    Get PDF
    The three-nucleon system is studied at energies a few hundred keV above the N-d threshold. Measurements of the tensor analyzing powers T20T_{20} and T21T_{21} for p-d elastic scattering at Ec.m.=432E_{c.m.}=432 keV are presented together with the corresponding theoretical predictions. The calculations are extended to very low energies since they are useful for extracting the p-d scattering lengths from the experimental data. The interaction considered here is the Argonne V18 potential plus the Urbana three-nucleon potential. The calculation of the asymptotic D- to S-state ratio for 3^3H and 3^3He, for which recent experimental results are available, is also presented.Comment: Latex, 11 pages, 2 figures, to be published in Phy.Lett.
    corecore