34 research outputs found

    Optimization of a PVC Membrane for Reference Field Effect Transistors

    Get PDF
    For the miniaturization of ISFET sensing systems, the concept of a REFET with low ion sensitivity is proposed to replace the conventional reference electrodes through the arrangement of a quasi reference electrode and a differential readout circuit. In this study, an ion-unblocking membrane was used as the top layer of a REFET. To optimize the REFET performance, the influences of the silylating process, different plasticizers, and the composition of the PVC cocktails were investigated. A low sensitivity (10.4 ± 2.2 mV/pH) and high linearity (99.7 ± 0.3 %) in the range from pH 2.2 to pH 11.6 was obtained for the REFET with a 60 wt.% DNP/(DNP + PVC) membrane. To evaluate the long term stability, the drift coefficient was estimated, and for the best REFET, it was −0.74 mV/h. Two criteria for assessing the lifetime of REFETs were used, namely the increase in pH sensitivity to a value higher than 15 mV/pH and the degradation of linearity below 99 %. For the best REFET, it was approximately 15 days

    Immobilization of enzyme and antibody on ALD-HfO2-EIS structure by NH3 plasma treatment

    Get PDF
    Thin hafnium oxide layers deposited by an atomic layer deposition system were investigated as the sensing membrane of the electrolyte-insulator-semiconductor structure. Moreover, a post-remote NH3 plasma treatment was proposed to replace the complicated silanization procedure for enzyme immobilization. Compared to conventional methods using chemical procedures, remote NH3 plasma treatment reduces the processing steps and time. The results exhibited that urea and antigen can be successfully detected, which indicated that the immobilization process is correct

    Optimization of Urea-EnFET Based on Ta2O5 Layer with Post Annealing

    Get PDF
    In this study, the urea-enzymatic field effect transistors (EnFETs) were investigated based on pH-ion sensitive field effect transistors (ISFETs) with tantalum pentoxide (Ta2O5) sensing membranes. In addition, a post N2 annealing was used to improve the sensing properties. At first, the pH sensitivity, hysteresis, drift, and light induced drift of the ISFETs were evaluated. After the covalent bonding process and urease immobilization, the urea sensitivity of the EnFETs were also investigated and compared with the conventional Si3N4 sensing layer. The ISFETs and EnFETs with annealed Ta2O5 sensing membranes showed the best responses, including the highest pH sensitivity (56.9 mV/pH, from pH 2 to pH 12) and also corresponded to the highest urea sensitivity (61 mV/pCurea, from 1 mM to 7.5 mM). Besides, the non-ideal factors of pH hysteresis, time drift, and light induced drift of the annealed samples were also lower than the controlled Ta2O5 and Si3N4 sensing membranes

    Light Addressable Potentiometric Sensor with Fluorine-Terminated Hafnium Oxide Layer for Sodium Detection

    Full text link
    In this study, post-CF4 plasma surface treatment of light addressable potentiometric sensor (LAPS) with a HfO2-sensing membrane was carried out. pH sensitivity decreased but pNa sensitivity increased with fluorine incorporation. The highest pNa sensitivity was 31.8 mV/pNa, which was optimized with 3 min post CF4 plasma treatment. The results showed a high possibility for sensing sodium ions using an inorganic-sensing membrane and a fabrication process. Moreover, on the basis of the analysis of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) spectra, a sensing mechanism was developed. </jats:p

    Single Si<inf>3</inf>N<inf>4</inf> layer on dual substrate for pH sensing micro sensor

    No full text
    corecore