342 research outputs found

    The mean ionic charges of N, Ne, MG, SI and S in solar energetic particle events

    Get PDF
    The mean ionic charges of nitrogen, neon, magnesium, silicon, and sulfur in solar flare particle events were determined for 12 flares during the time interval from September 1978 to September 1979. The observations were carried out with the MPI/UoMd ULEZEQ Sensor on the ISEE-3 satellite comparing the results with mean charge states established in a hot coronal plasma under equilibrium conditions, different temperatures for different elements are discussed. These range from approx. 2 million K to 7 million K in a single flare. From flare to flare the variation in temperature for each element is less than the variation between different ion species

    Trimaximal neutrino mixing from vacuum alignment in A4 and S4 models

    Full text link
    Recent T2K results indicate a sizeable reactor angle theta_13 which would rule out exact tri-bimaximal lepton mixing. We study the vacuum alignment of the Altarelli-Feruglio A4 family symmetry model including additional flavons in the 1' and 1" representations and show that it leads to trimaximal mixing in which the second column of the lepton mixing matrix consists of the column vector (1,1,1)^T/sqrt{3}, with a potentially large reactor angle. In order to limit the reactor angle and control the higher order corrections, we propose a renormalisable S4 model in which the 1' and 1" flavons of A4 are unified into a doublet of S4 which is spontaneously broken to A4 by a flavon which enters the neutrino sector at higher order. We study the vacuum alignment in the S4 model and show that it predicts accurate trimaximal mixing with approximate tri-bimaximal mixing, leading to a new mixing sum rule testable in future neutrino experiments. Both A4 and S4 models preserve form dominance and hence predict zero leptogenesis, up to renormalisation group corrections.Comment: 24 pages, 2 figures, version to be published in JHE

    Geometrical CP violation in multi-Higgs models

    Full text link
    We introduce several methods to obtain calculable phases with geometrical values that are independent of arbitrary parameters in the scalar potential. These phases depend on the number of scalars and on the order of the discrete non-Abelian group considered. Using these methods we present new geometrical CP violation candidates with vacuum expectation values that must violate CP (the transformation that would make them CP conserving is not a symmetry of the potential). We also extend to non-renormalisable potentials the proof that more than two scalars are needed to obtain these geometrical CP violation candidates.Comment: 8 pages, 2 figures. v2: table added, accepted by JHE

    Discrete symmetries and models of flavor mixing

    Full text link
    Evidences of a discrete symmetry behind the pattern of lepton mixing are analyzed. The program of "symmetry building" is outlined. Generic features and problems of realization of this program in consistent gauge models are formulated. The key issues include the flavor symmetry breaking, connection of mixing and masses, {\it ad hoc} prescription of flavor charges, "missing" representations, existence of new particles, possible accidental character of the TBM mixing. Various ways are considered to extend the leptonic symmetries to the quark sector and to reconcile them with Grand Unification. In this connection the quark-lepton complementarity could be a viable alternative to TBM. Observational consequences of the symmetries and future experimental tests of their existence are discussed.Comment: 14 pages, 5 figures. Talk given at the Symposium "DISCRETE 2010", 6 - 11 December 2010, La Sapienza, Rome, Ital

    Non-Abelian Discrete Flavor Symmetries on Orbifolds

    Full text link
    We study non-Abelian flavor symmetries on orbifolds, S1/Z2S^1/Z_2 and T2/Z3T^2/Z_3. Our extra dimensional models realize DND_N, Σ(2N2)\Sigma(2N^2), Δ(3N2)\Delta(3N^2) and Δ(6N2)\Delta(6N^2) including A4A_4 and S4S_4. In addition, one can also realize their subgroups such as QNQ_N, T7T_7, etc. The S3S_3 flavor symmetry can be realized on both S1/Z2S^1/Z_2 and T2/Z3T^2/Z_3 orbifolds.Comment: 16 page

    Using Synchronic and Diachronic Relations for Summarizing Multiple Documents Describing Evolving Events

    Full text link
    In this paper we present a fresh look at the problem of summarizing evolving events from multiple sources. After a discussion concerning the nature of evolving events we introduce a distinction between linearly and non-linearly evolving events. We present then a general methodology for the automatic creation of summaries from evolving events. At its heart lie the notions of Synchronic and Diachronic cross-document Relations (SDRs), whose aim is the identification of similarities and differences between sources, from a synchronical and diachronical perspective. SDRs do not connect documents or textual elements found therein, but structures one might call messages. Applying this methodology will yield a set of messages and relations, SDRs, connecting them, that is a graph which we call grid. We will show how such a grid can be considered as the starting point of a Natural Language Generation System. The methodology is evaluated in two case-studies, one for linearly evolving events (descriptions of football matches) and another one for non-linearly evolving events (terrorist incidents involving hostages). In both cases we evaluate the results produced by our computational systems.Comment: 45 pages, 6 figures. To appear in the Journal of Intelligent Information System

    The Golden Ratio Prediction for the Solar Angle from a Natural Model with A5 Flavour Symmetry

    Full text link
    We formulate a consistent model predicting, in the leading order approximation, maximal atmospheric mixing angle, vanishing reactor angle and tan {\theta}_12 = 1/{\phi} where {\phi} is the Golden Ratio. The model is based on the flavour symmetry A5 \times Z5 \times Z3, spontaneously broken by a set of flavon fields. By minimizing the scalar potential of the theory up to the next-to-leading order in the symmetry breaking parameter, we demonstrate that this mixing pattern is naturally achieved in a finite portion of the parameter space, through the vacuum alignment of the flavon fields. The leading order approximation is stable against higher-order corrections. We also compare our construction to other models based on discrete symmetry groups.Comment: 28 pages, 2 figures. Minor changes, references added. Corrected typos in Appendix A. Version appeared on JHE

    Finite flavour groups of fermions

    Full text link
    We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Though in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects.Comment: 89 pages, 6 figures, some references added, rearrangement of part of the material, section on SU(3) subgroups substantially extended, some minor revisions. Version for publication in J. Phys. A. Table 12 corrected to match eq.(256), table 14 and eq.(314) corrected to match the 2-dimensional irreps defined on p.6

    An SO(10) Grand Unified Theory of Flavor

    Get PDF
    We present a supersymmetric SO(10) grand unified theory (GUT) of flavor based on an S4S_4 family symmetry. It makes use of our recent proposal to use SO(10) with type II seesaw mechanism for neutrino masses combined with a simple ansatz that the dominant Yukawa matrix (the {\bf 10}-Higgs coupling to matter) has rank one. In this paper, we show how the rank one model can arise within some plausible assumptions as an effective field theory from vectorlike {\bf 16} dimensional matter fields with masses above the GUT scale. In order to obtain the desired fermion flavor texture we use S4S_4 flavon multiplets which acquire vevs in the ground state of the theory. By supplementing the S4S_4 theory with an additional discrete symmetry, we find that the flavon vacuum field alignments take a discrete set of values provided some of the higher dimensional couplings are small. Choosing a particular set of these vacuum alignments appears to lead to an unified understanding of observed quark-lepton flavor: (i) the lepton mixing matrix that is dominantly tri-bi-maximal with small corrections related to quark mixings; (ii) quark lepton mass relations at GUT scale: mbmτm_b\simeq m_{\tau} and mμ3msm_\mu\simeq 3 m_s and (iii) the solar to atmospheric neutrino mass ratio m/matmθCabibbom_\odot/m_{\rm atm}\simeq \theta_{\rm Cabibbo} in agreement with observations. The model predicts the neutrino mixing parameter, Ue3θCabibbo/(32)0.05U_{e3} \simeq \theta_{\rm Cabibbo}/(3\sqrt2) \sim 0.05, which should be observable in planned long baseline experiments.Comment: Final version of the paper as it will appear in JHEP
    corecore