371 research outputs found
Low energy electron irradiation induced deep level defects in 6H-SiC: The implication for the microstructure of the deep levels E1/E 2
The deep level defects in 6H-SiC induced by low energy electron irradiation was investigated. Electron energies of 0.2, 0.3, 0.5 and 1.7 MeV were used to produce the deep level defects in the n-type 6H-SiC materials. The deep level transient spectroscopy (DLTS) technique, combined with isochronal thermal annealing experiments, was used for the study of the defects. It was observed that deep levels ED1, E1/E2 and Ei were created with irradiation energies of 0.3 MeV or greater than that. The deep levels were found to be associated with primary atom displacement on the C atom of SiC sublattice and had microstructure containing the carbon vacancy.published_or_final_versio
Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3
published_or_final_versio
Disruption of the temporally regulated cloaca endodermal B-catenin signaling causes anorectal malformations
published_or_final_versio
Imaging and Dynamics of Light Atoms and Molecules on Graphene
Observing the individual building blocks of matter is one of the primary
goals of microscopy. The invention of the scanning tunneling microscope [1]
revolutionized experimental surface science in that atomic-scale features on a
solid-state surface could finally be readily imaged. However, scanning
tunneling microscopy has limited applicability due to restrictions, for
example, in sample conductivity, cleanliness, and data aquisition rate. An
older microscopy technique, that of transmission electron microscopy (TEM) [2,
3] has benefited tremendously in recent years from subtle instrumentation
advances, and individual heavy (high atomic number) atoms can now be detected
by TEM [4 - 7] even when embedded within a semiconductor material [8, 9].
However, detecting an individual low atomic number atom, for example carbon or
even hydrogen, is still extremely challenging, if not impossible, via
conventional TEM due to the very low contrast of light elements [2, 3, 10 -
12]. Here we demonstrate a means to observe, by conventional transmision
electron microscopy, even the smallest atoms and molecules: On a clean
single-layer graphene membrane, adsorbates such as atomic hydrogen and carbon
can be seen as if they were suspended in free space. We directly image such
individual adatoms, along with carbon chains and vacancies, and investigate
their dynamics in real time. These techniques open a way to reveal dynamics of
more complex chemical reactions or identify the atomic-scale structure of
unknown adsorbates. In addition, the study of atomic scale defects in graphene
may provide insights for nanoelectronic applications of this interesting
material.Comment: 9 pages manuscript and figures, 9 pages supplementary informatio
Genome-wide copy number variation study in anorectal malformations
Anorectal malformations (ARMs, congenital obstruction of the anal opening) are among the most common birth defects requiring surgical treatment (2-5/10 000 live-births) and carry significant chronic morbidity. ARMs present either as isolated or as part of the phenotypic spectrum of some chromosomal abnormalities or monogenic syndromes. The etiology is unknown. To assess the genetic contribution to ARMs, we investigated single-nucleotide polymorphisms and copy number variations (CNVs) at genome-wide scale. A total of 363 Han Chinese sporadic ARM patients and 4006 Han Chinese controls were included. Overall, we detected a 1.3-fold significant excess of rare CNVs in patients. Stratification of patients by presence/absence of other congenital anomalies showed that while syndromic ARM patients carried significantly longer rare duplications than controls (P = 0.049), non-syndromic patients were enriched with both rare deletions and duplications when compared with controls (P = 0.00031). Twelve chromosomal aberrations and 114 rare CNVs were observed in patients but not in 868 controls nor 11 943 healthy individuals from the Database of Genomic Variants. Importantly, these aberrations were observed in isolated ARM patients. Gene-based analysis revealed 79 genes interfered by CNVs in patients only. In particular, we identified a de novo DKK4 duplication. DKK4 is a member of the WNT signaling pathway which is involved in the development of the anorectal region. In mice, Wnt disruption results in ARMs. Our data suggest a role for rare CNVs not only in syndromic but also in isolated ARM patients and provide a list of plausible candidate genes for the disorder.postprin
Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA
Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart
Anti-cancer drug validation: the contribution of tissue engineered models
Abstract Drug toxicity frequently goes concealed until clinical trials stage, which is the most challenging, dangerous and expensive stage of drug development. Both the cultures of cancer cells in traditional 2D assays and animal studies have limitations that cannot ever be unraveled by improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. Considering the NCI60, a panel of 60 cancer cell lines representative of 9 different cancer types: leukemia, lung, colorectal, central nervous system (CNS), melanoma, ovarian, renal, prostate and breast, we propose to review current Bstate of art^ on the 9 cancer types specifically addressing the 3D tissue models that have been developed and used in drug discovery processes as an alternative to complement their studyThis article is a result of the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This article was also supported by the EU Framework Programme for Research and Innovation HORIZON 2020 (H2020) under grant agreement n° 668983 — FoReCaST. FCT distinction attributed to Joaquim M. Oliveira (IF/00423/2012) and Vitor M. Correlo (IF/01214/2014) under the Investigator FCT program is also greatly acknowledged.info:eu-repo/semantics/publishedVersio
Gene network analysis of candidate loci for human anorectal malformations
Posters: Complex Traits and Polygenic Disorders: abstract no. 1027TAnorectal malformations (ARMs) are birth defects that require surgery and carry significant chronic morbidity. Our genome-wide copy number variation (CNV) study had provided a wealth of candidate loci. To find out whether these candidate loci are related to important developmental pathways, we have ...postprin
Sample size requirements to detect the effect of a group of genetic variants in case-control studies
<p>Abstract</p> <p>Background</p> <p>Because common diseases are caused by complex interactions among many genetic variants along with environmental risk factors, very large sample sizes are usually needed to detect such effects in case-control studies. Nevertheless, many genetic variants act in well defined biologic systems or metabolic pathways. Therefore, a reasonable first step may be to detect the effect of a group of genetic variants before assessing specific variants.</p> <p>Methods</p> <p>We present a simple method for determining approximate sample sizes required to detect the average joint effect of a group of genetic variants in a case-control study for multiplicative models.</p> <p>Results</p> <p>For a range of reasonable numbers of genetic variants, the sample size requirements for the test statistic proposed here are generally not larger than those needed for assessing marginal effects of individual variants and actually decline with increasing number of genetic variants in many situations considered in the group.</p> <p>Conclusion</p> <p>When a significant effect of the group of genetic variants is detected, subsequent multiple tests could be conducted to detect which individual genetic variants and their combinations are associated with disease risk. When testing for an effect size in a group of genetic variants, one can use our global test described in this paper, because the sample size required to detect an effect size in the group is comparatively small. Our method could be viewed as a screening tool for assessing groups of genetic variants involved in pathogenesis and etiology of common complex human diseases.</p
Dialysis-associated peritonitis in children
Peritonitis remains a frequent complication of peritoneal dialysis in children and is the most common reason for technique failure. The microbiology is characterized by a predominance of Gram-positive organisms, with fungi responsible for less than 5% of episodes. Data collected by the International Pediatric Peritonitis Registry have revealed a worldwide variation in the bacterial etiology of peritonitis, as well as in the rate of culture-negative peritonitis. Risk factors for infection include young age, the absence of prophylactic antibiotics at catheter placement, spiking of dialysis bags, and the presence of a catheter exit-site or tunnel infection. Clinical symptoms at presentation are somewhat organism specific and can be objectively assessed with a Disease Severity Score. Whereas recommendations for empiric antibiotic therapy in children have been published by the International Society of Peritoneal Dialysis, epidemiologic data and antibiotic susceptibility data suggest that it may be desirable to take the patient- and center-specific history of microorganisms and their sensitivity patterns into account when prescribing initial therapy. The vast majority of patients are treated successfully and continue peritoneal dialysis, with the poorest outcome noted in patients with peritonitis secondary to Gram-negative organisms or fungi and in those with a relapsing infection
- …
