912 research outputs found

    Proteomic analysis of androgen-regulated protein expression in a mouse fetal vas deferens cell line

    Get PDF
    During sex differentiation, androgens are essential for development of the male genital tract. The Wolffian duct is an androgen-sensitive target tissue that develops into the epididymis, vas deferens, and seminal vesicle. The present study aimed to identify androgen-regulated proteins that are involved in development of Wolffian duct-derived structures. We have used male mouse embryos transgenic for temperature-sensitive simian virus 40 large tumor antigen at 18 d of gestation, to generate immortalized mouse fetal vas deferens (MFVD) parental and clonal cell lines. The MFVD parental and clonal cell lines express androgen receptor protein and show features of Wolffian duct mesenchymal cells. Clonal cell line MFVD A6 was selected for proteomic analysis and cultured in the absence or presence of androgens. Subsequently, two-dimensional gel electrophoresis was performed on total cell lysates. Differentially expressed proteins were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and two androgen-regulated proteins were identified as mElfin and CArG-binding factor-A (CBF-A). CBF-A and mElfin are known to bind to cytoskeletal F-actin. Both proteins appeared to be regulated by androgens at the posttranslational level, possibly involving phosphorylation. Posttranslational modification of mElfin and CBF-A by androgens may be associated with a cytoskeletal change that is involved in androgen-regulated gene expression

    Top-down analysis of protein samples by de novo sequencing techniques

    Get PDF
    Motivation: Recent technological advances have made high-resolution mass spectrometers affordable to many laboratories, thus boosting rapid development of top-down mass spectrometry, and implying a need in efficient methods for analyzing this kind of data. Results: We describe a method for analysis of protein samples from top-down tandem mass spectrometry data, which capitalizes on de novo sequencing of fragments of the proteins present in the sample. Our algorithm takes as input a set of de novo amino acid strings derived from the given mass spectra using the recently proposed Twister approach, and combines them into aggregated strings endowed with offsets. The former typically constitute accurate sequence fragments of sufficiently well-represented proteins from the sample being analyzed, while the latter indicate their location in the protein sequence, and also bear information on post-translational modifications and fragmentation patterns. Availability and Implementation: Freely available on the web at http://bioinf.spbau.ru/en/twister

    Proteomic Analysis of Human Osteoblastic Cells: Relevant Proteins and Functional Categories for Differentiation

    Get PDF
    Abstract Osteoblasts are the bone forming cells, capable of secreting an extracellular matrix with mineralization potential. The exact mechanism by which osteoblasts differentiate and form a mineralized extracellular matrix is presently not fully understood. To increase our knowledge about this process, we conducted proteomics analysis in human immortalized preosteoblasts (SV-HFO) able to differentiate and mineralize. We identified 381 proteins expressed during the time course of osteoblast differentiation. Gene ontology analysis revealed an overrepresentation of protein categories established as important players for osteoblast differentiation, bone formation, and mineralization such as pyrophosphatases. Proteins involved in antigen presentation, energy metabolism and cytoskeleton rearrangement constitute other overrepresented processes, whose function, albeit interesting, is not fully understood in the context of osteoblast differentiation and bone formation. Correlation analysis, based on quantitative data, revealed a biphasic osteoblast differentiation, encompassing a premineralization and a mineralization period. Identified differentially expressed proteins between mineralized and nonmineralized cells include cytoskeleton (e.g., CCT2, PLEC1, and FLNA) and extracellular matrix constituents (FN1, ANXA2, and LGALS1) among others. FT-ICR-MS data obtained for FN1, ANXA2, and LMNA shows a specific regulation of these proteins during the different phases of osteoblast differentiation. Taken together, this study increases our understanding of the proteomics changes that accompany osteoblast differentiation and may permit the discovery of novel modulators of bone formation

    SIMPATIQCO: A server-based software suite which facilitates monitoring the time course of LC-MS performance metrics on orbitrap instruments

    Get PDF
    While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC-MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge

    Collagen Peptides in Urine: A New Promising Biomarker for the Detection of Colorectal Liver Metastases

    Get PDF
    Introduction:For both patients and the outpatient clinic the frequent follow-up visits after a resection of colorectal cancer (CRC) are time consuming and due to large patient numbers expensive. Therefore it is important to develop an effective non-invasive test for the detection of colorectal liver metastasis (CRLM) which could be used outside the hospital. The urine proteome is known to provide detailed information for monitoring changes in the physiology of humans. Urine collection is non-invasive and urine naturally occurring peptides (NOPs) have the advantage of being easily accessible without labour-intensive sample preparation. These advantages make it potentially useful for a quick and reliable application in clinical settings. In this study, we will focus on the identification and validation of urine NOPs to discriminate patients with CRLM from healthy controls.Materials and Methods:Urine samples were collected from 24 patients with CRLM and 25 healthy controls. In the first part of the study, samples were measured with a nano liquid chromatography (LC) system (Thermo Fisher Scientific, Germaring, Germany) coupled on-line to a hybrid linear ion trap/Orbitrap mass spectrometer (LTQ-Orbitrap-XL, Thermo Fisher Scientific, Bremen, Germany). A discovery set was used to construct the model and consecutively the validation set, being independent from the discovery set, to check the acquired model. From the peptides which were selected, multiple reaction monitoring (MRM's) were developed on a UPLC-MS/MS system.Results:Seven peptides were selected and applied in a discriminant analysis a sensitivity of 84.6% and a specificity of 92.3% were established (Canonical correlation:0.797, Eigenvalue:1.744, F:4.49, p:0.005). The peptides AGPP(-OH)GEAGKP(-OH)GEQGVP(-OH)GDLGA P(-OH)GP and KGNSGEP(-OH)GAPGSKGDTGAKGEP(-OH)GPVG were selected for further quantitative analysis which showed a sensitivity of 88% and a specificity of 88%.Conclusion:Urine proteomic analysis revealed two very promising peptides, both part from collagen type 1, AGPP(-OH)GEAGKP(-OH)GEQGVP(-OH)GDLGAP(-OH)GP and KGNSGEP(-OH)GAPGSKGDTGAKGEP(-OH)GPVG which could detect CRLM in a non-invasive manner

    Proteomic alterations in early stage cervical cancer

    Get PDF
    Laser capture microdissection (LCM) allows the capture of cell types or well-defined structures in tissue. We compared in a semi-quantitative way the proteomes from an equivalent of 8,000 tumor cells from patients with squamous cell cervical cancer (SCC, n = 22) with healthy epithelial and stromal cells obtained from normal cervical tissue (n = 13). Proteins were enzymatically digested into peptides which were measured by high-resolution mass spectrometry and analyzed by “all-or-nothing” analysis, Bonferroni, and Benjamini-Hochberg correction for multiple testing. By comparing LCM cell type preparations, 31 proteins were exclusively found in early stage cervical cancer (n = 11) when compared with healthy epithelium and stroma, based on criteria that address specificity in a restrictive “all-or-nothing” way. By Bonferroni correction for multiple testing, 30 proteins were significantly up-regulated between early stage cervical cancer and healthy control, including six members of the MCM protein family. MCM proteins are involved in DNA repair and expected to be participating in the early stage of cancer. After a less stringent Benjamini-Hochberg correction for multiple testing, we found that the abundances of 319 proteins were significantly different between early stage cervical cancer and healthy controls. Four proteins were confirmed in digests of whole tissue lysates by Parallel Reaction Monitoring (PRM). Ingenuity Pathway Analysis using correction for multiple testing by permutation resulted in two networks that were differentially regulated in early stage cervical cancer compared with healthy tissue. From these networks, we learned that specific tumor mechanisms become effective during the early stage of cervical cancer

    The distribution and characterization of HNK-1 antigens in the developing avian heart

    Get PDF
    The heart originates from splanchnic mesoderm and to a lesser extent from neural crest cells. The HNK-1 monoclonal antibody is a marker for early migrating neural crest cells, but reacts also with structures which are not derived from the neural crest. We investigated whether heart structures are HNK-1 positive before neural crest cells colonize these target tissues. To that end, we determined the HNK-1 antigen expression in the developing avian heart on immunohistochemical sections and on Western blots. The HNK-1 immunoreactivity in the developing chick heart is compared with data from literature cm the localization of neural crest cells in chick/quail chimeras. Structures with neural crest contribution, including parts of the early outflow tract and the related endocardial cushions, the primordia of the semilunar valve leaflets and the aorticopulmonary septum were HNK-1 positive. Furthermore, other structures were HNK-1 positive, such as the atrioventricular cushions, the wall of the sinus venosus at stage HH 15 through 21, parts of the endocardium at E3, parts of the myocardium at E6, and the extracellular matrix in the myocardial base of the semilunar valves at E14. HNK-1 expression was particularly observed in morphologically dynamic regions such as the developing valves, the outflow tract cushion, the developing conduction system and the autonomie nervous system of the heart. We observed that atrioventricular endocardial cushions are HNK-1 positive. We conclude that: a HNK-1 immunoreactivity does not always coincide with the presence of neural crest cells or their derivatives; (2) the outflow tract cushions and atrioventricular endocardial cushions are HNK-1 positive before neural crest cells are expected (stage HH 19) to enter the endocardial cushions of the outflow tract; (3) the observed spatio-temporal HNK-1 patterns observed in the developing heart correspond with various HNK-1 antigens. Apart from a constant pattern of HNK-1 antigens during development, stage-dependent HNK-1 antigens were also found

    Proteomic characterization of microdissected breast tissue environment provides a protein-level overview of malignant transformation

    Get PDF
    Both healthy and cancerous breast tissue is heterogeneous, which is a bottleneck for proteomics-based biomarker analysis, as it obscures the cellular origin of a measured protein. We therefore aimed at obtaining a protein-level interpretation of malignant transformation through global proteome analysis of a variety of laser capture microdissected cells originating from benign and malignant breast tissues. We compared proteomic differences between these tissues, both from cells of epithelial origin and the stromal environment, and performed string analysis. Differences in protein abundances corresponded with several hallmarks of cancer, including loss of cell adhesion, transformation to a migratory phenotype, and enhanced energy metabolism. Furthermore, despite enriching for (tumor) epithelial cells, many changes to the extracellular matrix were detected in microdissected cells of epithelial origin. The stromal compartment was heterogeneous and richer in the number of fibroblast and immune cells in malignant sections, compared to benign tissue sections. Furthermore, stroma could be clearly divided into reactive and nonreactive based on extracellular matrix disassembly proteins. We conclude that proteomics analysis of both microdissected epithelium and stroma gives an additional layer of information and more detailed insight into malignant transformation

    Dried blood spot UHPLC-MS/MS analysis of oseltamivir and oseltamivircarboxylate-a validated assay for the clinic

    Get PDF
    The neuraminidase inhibitor oseltamivir (Tamiflu®) is currently the first-line therapy for patients with influenza virus infection. Common analysis of the prodrug and its active metabolite oseltamivircarboxylate is determined via extraction from plasma. Compared with these assays, dried blood spot (DBS) analysis provides several advantages, including a minimum sample volume required for the measurement of drugs in whole blood. Samples can easily be obtained via a simple, non-invasive finger or heel prick. Mainly, these characteristics make DBS an ideal tool for pediatrics and to measure multiple time points such as those needed in therapeutic drug monitoring or pharmacokinetic studies. Additionally, DBS sample preparation, stability, and storage are usually most convenient. In the present work, we developed and fully validated a DBS assay for the simultaneous determination of oseltamivir and oseltamivircarboxylate concentrations in human whole blood. We demonstrate the simplicity of DBS sample preparation, and a fast, accurate and reproducible analysis using ultra high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer. A thorough validation on the basis of the most recent FDA guidelines for bioanalytical method validation showed that the method is selective, precise, and accurate (≤15% RSD), and sensitive over the relevant clinical range of 5-1,500 ng/mL for oseltamivir and 20-1,500 ng/mL for the oseltamivircarboxyl
    corecore