314 research outputs found
Cannabis, a Significant Risk Factor for Violent Behavior in the Early Phase Psychosis. Two Patterns of Interaction of Factors Increase the Risk of Violent Behavior: Cannabis Use Disorder and Impulsivity; Cannabis Use Disorder, Lack of Insight and Treatment Adherence.
<b>Background:</b> Previous literature suggests that prevalence of cannabis use in the early phase of psychosis is high, and that early psychosis patients are at high-risk for violent behavior. However, the link between cannabis use and violent behavior in early psychosis patients is unclear. We carried out a study on a sample of early psychosis patients, in order to explore the impact of cannabis use on the risk of violent behavior (VB), while taking into account (1) potential confounding factors and, (2) interactions with other dynamic risk factors of VB. <b>Method:</b> In a sample of 265 early psychosis patients, treated at the Treatment and Early Intervention in Psychosis Program (TIPP) in Lausanne, we used logistic regression models to explore the link between various dynamic risk factors of VB [positive symptoms, substance use disorder (drugs including cannabis, alcohol and others drugs), insight, impulsivity, affective instability, and treatment adherence], and VB occurring during treatment. In order to understand hierarchical effects attributable to the combinations of risk factors on VB we conducted a Classification and Regression Tree (CART). <b>Results:</b> Our results show that cannabis use disorder is a risk factor for VB. The associations among risk factors suggest the presence of two patient profiles with an increased rate of VB: the first is composed of patients with cannabis use disorder and impulsivity, and the second of patients combining cannabis use disorder, absence of insight and non-adherence to treatment. The results also show the moderating role of insight and adherence to treatment on the rate of VB in patients with cannabis use disorder. <b>Conclusion:</b> This study suggests that cannabis use disorder is a significant risk factor for VB amongst early psychosis patients, particularly when combined with either impulsivity, lack of insight and non-adherence to treatment. These results suggest that preventive strategies could be developed on the basis of such patient profiles
3D reconstruction of magnetization from dichroic soft X-ray transmission tomography
The development of magnetic nanostructures for applications in spintronics requires methods capable of visualizing their magnetization. Soft X‐ray magnetic imaging combined with circular magnetic dichroism allows nanostructures up to 100–300 nm in thickness to be probed with resolutions of 20–40 nm. Here a new iterative tomographic reconstruction method to extract the three‐dimensional magnetization configuration from tomographic projections is presented. The vector field is reconstructed by using a modified algebraic reconstruction approach based on solving a set of linear equations in an iterative manner. The application of this method is illustrated with two examples (magnetic nano‐disc and micro‐square heterostructure) along with comparison of error in reconstructions, and convergence of the algorithm
Connecting genetics to childhood trauma in First Episode Psychosis: Mediating pathways and potential epigenetic mechanisms
Cycloidal Domains in the Magnetization Reversal Process of Ni80Fe20/Nd16Co84/Gd12Co88 Trilayers
The magnetization reversal of each individual layer in magnetic trilayers (
permalloy
/
Nd
Co
/
Gd
Co
) is investigated in detail with x-ray microscopy and micromagnetic calculations. Two sequential inversion mechanisms are identified. First, magnetic vortex-antivortex pairs move along the field direction while inverting the magnetization of magnetic stripes until they are pinned by defects. The vortex-antivortex displacements are reversible within a field interval which allows their controlled motion. Second, as the reversed magnetic field increases, cycloidal domains appear in the permalloy layer as a consequence of the dissociation of vortex-antivortex pairs due to pinning. The field range where magnetic vortices and antivortices are effectively guided by the stripe pattern is of the order of tens of mT for the
Ni
Fe
layer, as estimated from the stability of cycloid domains in the sample
Double percolation effects and fractal behavior in magnetic/superconducting hybrids
Perpendicular magnetic anisotropy ferromagnetic/superconducting (FM/SC) bilayers with a labyrinth domain structure are used to study nucleation of superconductivity on a fractal network, tunable through magnetic history. As clusters of reversed domains appear in the FM layer, the SC film shows a percolative behavior that depends on two independent processes: the arrangement of initial reversed domains and the fractal geometry of expanding clusters. For a full labyrinth structure, the behavior of the upper critical field is typical of confined superconductivity on a fractal network
Perpendicular magnetic anisotropy in Nd-Co alloy films nanostructured by di-block copolymer templates
Nd-Co amorphous magnetic films with perpendicular magnetic anisotropy have been grown on nanostructured templates prepared with self-organized di-block poly(styrene)-block-poly(4-vinylpyridine) copolymer layers with a periodic structure of 60 nm spaced pores. These templates modify both the magnetic film topography and mechanical strain on a local scale. The effect of these structural changes is particularly noticeable in the low thickness range of the magnetic films where the transition from in-plane to out-of plane magnetization takes place. The Nd-Co films grown on the copolymer template present lower perpendicular magnetic anisotropy and, also, stronger stripe domain pinning effects in comparison with reference films grown on flat Si substrates
Microscopic origin of perpendicular magnetic anisotropy in amorphous Nd-Co homogeneous and compositionally modulated, thin films studied by XMCD
The brain in flow: a systematic review on the neural basis of the flow state
Background: Flow state is a subjective experience that people report when task performance is experienced as automatic, intrinsically rewarding, optimal and effortless. While this intriguing phenomenon is the subject of a plethora of behavioural studies, only recently researchers have started to look at its neural correlates. Here, we aim to systematically and critically review the existing literature on the neural correlates of the flow state.
Methods: Three electronic databases (Web of Science, Scopus and PsycINFO) were searched to acquire information on eligible articles in July, 2021, and updated in March, 2022. Studies that measured or manipulated flow state (through questionnaires or employing experimental paradigms) and recorded associated brain activity with electroencephalography (EEG), functional magnetic resonance (fMRI) or functional near-infrared spectroscopy (fNIRS) or manipulated brain activity with transcranial direct current stimulation (tDCS) were selected. We used the Cochrane Collaboration Risk of Bias 2 (RoB 2) tool to assess the methodological quality of eligible records.
Results: In total, 25 studies were included, which involved 471 participants. In general, the studies that experimentally addressed flow state and its neural dynamics seem to converge on the key role of structures linked to attention, executive function and reward systems, giving to the anterior brain areas (e.g., the DLPC, MPFC, IFG) a crucial role in the experience of flow. However, the dynamics of these brain regions during flow state are inconsistent across studies.
Discussion: In light of the results, we conclude that the current available evidence is sparse and inconclusive, which limits any theoretical debate. We also outline major limitations of this literature (the small number of studies, the high heterogeneity across them and their important methodological constraints) and highlight several aspects regarding experimental design and flow measurements that may provide useful avenues for future studies on this topic.Spanish Government 20CO1/012863Ministry of Science and Innovation, Spain (MICINN)
Spanish Government PID2019-105635GBI00Junta de Andalucia DOC_0022
- …
