12,827 research outputs found

    Boundary terms for eleven-dimensional supergravity and M-theory

    Full text link
    A new action for eleven dimensional supergravity on a manifold with boundary is presented. The action is a possible low energy limit of MM-theory. Previous problems with infinite constants in the action are overcome and a new set of boundary conditions relating the behaviour of the supergravity fields to matter fields are obtained. One effect of these boundary conditions is that matter fields generate gravitational torsion.Comment: 4 pages;with reference

    Inflating Intersecting Branes and Remarks on the Hierarchy Problem

    Get PDF
    We generalize solutions of Einstein's equations for intersecting branes in higher dimensional spacetimes to the nonstatic case, modeling an expanding universe. The relation between the Hubble rate, the brane tensions, and the bulk cosmological constant is similar to the case of a single 3-brane in a 5-dimensional spacetime. However, because the bulk inflates as well as the branes, this class of solutions suffers from Newton's constant tending toward zero on the TeV brane, where the Randall-Sundrum mechanism should solve the weak scale hierarchy problem. The strength of gravity remains constant on the Planck brane, however.Comment: 10 pages, LaTeX. v2:Misprint in eq. (23) corrected; citations fixed and clarified relationship of our work to hep-th/9909053 and hep-th/9909076 v3: final version to appear in PLB. Corrected discussion of the time dependance of the 4-D Planck mass on the TeV brane. Some references added to earlier works on warped Kaluza-Klein compactification

    One loop effective potential in heterotic M-theory

    Full text link
    We have calculated the one loop effective potential of the vector multiplets arising from the compactification to five dimensions of heterotic M-theory on a Calabi-Yau manifold with h^{1,1}>1. We find that extensive cancellations between the fermionic and bosonic sectors of the theory cause the effective potential to vanish, with the exception of a higher order curvature term of the type which might arise from string corrections.Comment: Latex, 28 pages, 1 figur

    Balancing the vacuum energy in heterotic MM-theory

    Full text link
    Moduli stabilisation is explored in the context of low-energy heterotic MM-theory to show that a small value of the cosmological constant can result from a balance between the negative potential energy left over from stabilising the moduli and a positive Casimir energy from the higher dimensions. Supersymmetry breaking is induced by the fermion boundary conditions on the two branes in the theory. An explicit calculation of the Casimir energy for the gravitino reveals that the energy has the correct sign, although the size of the contribution is close to the edge of the parameter range for which the calculation is valid.Comment: 15 pages, 4figures, ReVTeX, v3 stresses some point

    Entropy considerations in constraining the mSUGRA parameter space

    Full text link
    We explore the use of two criteria to constraint the allowed parameter space in mSUGRA models. Both criteria are based in the calculation of the present density of neutralinos as dark matter in the Universe. The first one is the usual ``abundance'' criterion which is used to calculate the relic density after the ``freeze-out'' era. To compute the relic density we used the numerical public code micrOMEGAs. The second criterion applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas evaluating then the change in the entropy per particle of this gas between the ``freeze-out'' era and present day virialized structures. An ``entropy-consistency'' criterion emerges by comparing theoretical and empirical estimates of this entropy. The main objective of our work is to determine for which regions of the parameter space in the mSUGRA model are both criteria consistent with the 2σ\sigma bounds according to WMAP for the relic density: 0.0945<ΩCDMh2<0.12870.0945<\Omega_{CDM}h^2<0.1287. As a first result, we found that for A0=0A_0=0, sgnμ=+\mu=+, small values of tanβ\beta are not favored; only for tanβ50\beta\simeq50 are both criteria significantly consistent.Comment: 5 pages, 1 figure. To appear in the Proceedings of X Mexican Workshop on Particles and Fields, Morelia Michoac\'an, M\'exico, November 7-12, 200

    Optimal Planar Electric Dipole Antenna

    Full text link
    Considerable time is often spent optimizing antennas to meet specific design metrics. Rarely, however, are the resulting antenna designs compared to rigorous physical bounds on those metrics. Here we study the performance of optimized planar meander line antennas with respect to such bounds. Results show that these simple structures meet the lower bound on radiation Q-factor (maximizing single resonance fractional bandwidth), but are far from reaching the associated physical bounds on efficiency. The relative performance of other canonical antenna designs is compared in similar ways, and the quantitative results are connected to intuitions from small antenna design, physical bounds, and matching network design.Comment: 10 pages, 15 figures, 2 tables, 4 boxe

    Dynamics of a trapped Brownian particle in shear flows

    Full text link
    The Brownian motion of a particle in a harmonic potential, which is simultaneously exposed either to a linear shear flow or to a plane Poiseuille flow is investigated. In the shear plane of both flows the probability distribution of the particle becomes anisotropic and the dynamics is changed in a characteristic manner compared to a trapped particle in a quiescent fluid. The particle distribution takes either an elliptical or a parachute shape or a superposition of both depending on the mean particle position in the shear plane. Simultaneously, shear-induced cross-correlations between particle fluctuations along orthogonal directions in the shear plane are found. They are asymmetric in time. In Poiseuille flow thermal particle fluctuations perpendicular to the flow direction in the shear plane induce a shift of the particle's mean position away from the potential minimum. Two complementary methods are suggested to measure shear-induced cross-correlations between particle fluctuations along orthogonal directions.Comment: 14 pages, 7 figure
    corecore