747 research outputs found
Ferroelectric and dielectric characterization studies on relaxor- and ferroelectric-like strontium-barium niobates
Ferroelectric domain structure evolution induced by an external electric
field was investigated by means of nematic liquid crystal (NLC) method in two
strontium-barium niobate single crystals of nominal composition:
Sr_{0.70}Ba_{0.30}Nb_{2}O_{6} (SBN:70 - relaxor) and
Sr_{0.26}Ba_{0.74}Nb_{2}O_{6} (SBN:26 - ferroelectric). Our results provide
evidence that the broad phase transition and frequency dispersion that are
exhibited in SBN:70 crystal have a strong link to the configuration of
ferroelectric microdomains. The large leakage current revealed in SBN:26 may
compensate internal charges acting as pinning centers for domain walls, which
gives rise to a less restricted domain growth similar to that observed in
classical ferroelectrics. Microscale studies of a switching process in
conjunction with electrical measurements allowed us to establish a relationship
between local properties of the domain dynamics and macroscopic response i.e.,
polarization hysteresis loop and dielectric properties.Comment: 10 pages, 7 figure
Fredkin Gates for Finite-valued Reversible and Conservative Logics
The basic principles and results of Conservative Logic introduced by Fredkin
and Toffoli on the basis of a seminal paper of Landauer are extended to
d-valued logics, with a special attention to three-valued logics. Different
approaches to d-valued logics are examined in order to determine some possible
universal sets of logic primitives. In particular, we consider the typical
connectives of Lukasiewicz and Godel logics, as well as Chang's MV-algebras. As
a result, some possible three-valued and d-valued universal gates are described
which realize a functionally complete set of fundamental connectives.Comment: 57 pages, 10 figures, 16 tables, 2 diagram
G-protein betagamma-complex is crucial for efficient signal amplification in vision
A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. While much is now known about the role of the α-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary βγ-complex in this process remains a mystery. Here we show that elimination of the transducin γ-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin βγ-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions
Design and Characterization of a Hypervelocity Expansion Tube Facility
We report on the design and characterization of a 152 mm diameter expansion tube capable of accessing a range of high enthalpy test conditions
with Mach numbers up to 7.1 for aerodynamic studies. Expansion tubes
have the potential to offer a wide range of test flow conditions as gas acceleration is achieved through interaction with an unsteady expansion wave
rather than expansion through a fixed area ratio nozzle. However, the range
of test flow conditions is in practice limited by a number of considerations
such as short test time and large amplitude flow disturbances. We present
a generalized design strategy for small-scale expansion tubes. As a starting
point, ideal gas dynamic calculations for optimal facility design to maximize
test time at a given Mach number test condition are presented, together
with a correction for the expansion head reflection through a non-simple
region. A compilation of practical limitations that have been identified for
expansion tube facilities such as diaphragm rupture and flow disturbance
minimization is then used to map out a functional design parameter space.
Experimentally, a range of test conditions have been verified through pitot
pressure measurements and analysis of schlieren images of flow over simple
geometries. To date there has been good agreement between theoretical
and experimental results
Boundary-layer and wake investigation in supersonic flow
The report describes the results of traverses of the boundary-layer and wake encountered in a small supersonic tunnel at a Mach number of 2.5. The tunnel was arranged with two throats in parallel formed by two shaped walls enclosing a shaped central element. Both the laminar and turbulent boundary-layers were encountered and compared with existing experimental and theoretical results. The frictional drag of the central element as deduced from the wake traverses is in close agreement with that calculated from considerations of laminar boundary-layer growth over the surface of the element. The tests also provide information relating to the design of nozzle profiles, particularly at the point of inflexion, where the changes of pressure gradient may have a serious effect on the boundary-layer and on the velocity distribution
Quantum Computer with Mixed States and Four-Valued Logic
In this paper we discuss a model of quantum computer in which a state is an
operator of density matrix and gates are general quantum operations, not
necessarily unitary. A mixed state (operator of density matrix) of n two-level
quantum systems is considered as an element of 4^n-dimensional operator Hilbert
space (Liouville space). It allows to use a quantum computer model with
four-valued logic. The gates of this model are general superoperators which act
on n-ququat state. Ququat is a quantum state in a four-dimensional (operator)
Hilbert space. Unitary two-valued logic gates and quantum operations for an
n-qubit open system are considered as four-valued logic gates acting on
n-ququat. We discuss properties of quantum four-valued logic gates. In the
paper we study universality for quantum four-valued logic gates.Comment: 17 page
Diversity-driven extensible hierarchical reinforcement learning
Hierarchical reinforcement learning (HRL) has recently shown promising advances on speeding up learning, improving the exploration, and discovering intertask transferable skills. Most recent works focus on HRL with two levels, i.e., a master policy manipulates subpolicies, which in turn manipulate primitive actions. However, HRL with multiple levels is usually needed in many real-world scenarios, whose ultimate goals are highly abstract, while their actions are very primitive. Therefore, in this paper, we propose a diversitydriven extensible HRL (DEHRL), where an extensible and scalable framework is built and learned levelwise to realize HRL with multiple levels. DEHRL follows a popular assumption: diverse subpolicies are useful, i.e., subpolicies are believed to be more useful if they are more diverse. However, existing implementations of this diversity assumption usually have their own drawbacks, which makes them inapplicable to HRL with multiple levels. Consequently, we further propose a novel diversity-driven solution to achieve this assumption in DEHRL. Experimental studies evaluate DEHRL with nine baselines from four perspectives in two domains; the results show that DEHRL outperforms the state-of-the-art baselines in all four aspects
- …
