19,092 research outputs found

    Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems

    Full text link
    We consider projection algorithms for solving (nonconvex) feasibility problems in Euclidean spaces. Of special interest are the Method of Alternating Projections (MAP) and the Douglas-Rachford or Averaged Alternating Reflection Algorithm (AAR). In the case of convex feasibility, firm nonexpansiveness of projection mappings is a global property that yields global convergence of MAP and for consistent problems AAR. Based on (\epsilon, \delta)-regularity of sets developed by Bauschke, Luke, Phan and Wang in 2012, a relaxed local version of firm nonexpansiveness with respect to the intersection is introduced for consistent feasibility problems. Together with a coercivity condition that relates to the regularity of the intersection, this yields local linear convergence of MAP for a wide class of nonconvex problems,Comment: 22 pages, no figures, 30 reference

    Sparse Image Reconstruction for the SPIDER Optical Interferometric Telescope

    Full text link
    The concept of a recently proposed small-scale interferometric optical imaging device, an instrument known as the Segmented Planar Imaging Detector for Electro-optical Reconnaissance (SPIDER), is of great interest for its possible applications in astronomy and space science. Due to low weight, low power consumption, and high resolution, the SPIDER telescope could replace the large space telescopes that exist today. Unlike traditional optical interferometry the SPIDER accurately retrieves both phase and amplitude information, making the measurement process analogous to a radio interferometer. State of the art sparse radio interferometric image reconstruction techniques have been gaining traction in radio astronomy and reconstruct accurate images of the radio sky. In this work we describe algorithms from radio interferometric imaging and sparse image reconstruction and demonstrate their application to the SPIDER concept telescope through simulated observation and reconstruction of the optical sky. Such algorithms are important for providing high fidelity images from SPIDER observations, helping to power the SPIDER concept for scientific and astronomical analysis.Comment: 4 Pages, 2 Figures, 1 Tabl

    A Globally Linearly Convergent Method for Pointwise Quadratically Supportable Convex-Concave Saddle Point Problems

    Full text link
    We study the \emph{Proximal Alternating Predictor-Corrector} (PAPC) algorithm introduced recently by Drori, Sabach and Teboulle to solve nonsmooth structured convex-concave saddle point problems consisting of the sum of a smooth convex function, a finite collection of nonsmooth convex functions and bilinear terms. We introduce the notion of pointwise quadratic supportability, which is a relaxation of a standard strong convexity assumption and allows us to show that the primal sequence is R-linearly convergent to an optimal solution and the primal-dual sequence is globally Q-linearly convergent. We illustrate the proposed method on total variation denoising problems and on locally adaptive estimation in signal/image deconvolution and denoising with multiresolution statistical constraints.Comment: 34 pages, 18 figure

    Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility

    Full text link
    The problem of finding a vector with the fewest nonzero elements that satisfies an underdetermined system of linear equations is an NP-complete problem that is typically solved numerically via convex heuristics or nicely-behaved nonconvex relaxations. In this work we consider elementary methods based on projections for solving a sparse feasibility problem without employing convex heuristics. In a recent paper Bauschke, Luke, Phan and Wang (2014) showed that, locally, the fundamental method of alternating projections must converge linearly to a solution to the sparse feasibility problem with an affine constraint. In this paper we apply different analytical tools that allow us to show global linear convergence of alternating projections under familiar constraint qualifications. These analytical tools can also be applied to other algorithms. This is demonstrated with the prominent Douglas-Rachford algorithm where we establish local linear convergence of this method applied to the sparse affine feasibility problem.Comment: 29 pages, 2 figures, 37 references. Much expanded version from last submission. Title changed to reflect new development

    A fast and exact ww-stacking and ww-projection hybrid algorithm for wide-field interferometric imaging

    Get PDF
    The standard wide-field imaging technique, the ww-projection, allows correction for wide-fields of view for non-coplanar radio interferometric arrays. However, calculating exact corrections for each measurement has not been possible due to the amount of computation required at high resolution and with the large number of visibilities from current interferometers. The required accuracy and computational cost of these corrections is one of the largest unsolved challenges facing next generation radio interferometers such as the Square Kilometre Array. We show that the same calculation can be performed with a radially symmetric ww-projection kernel, where we use one dimensional adaptive quadrature to calculate the resulting Hankel transform, decreasing the computation required for kernel generation by several orders of magnitude, whilst preserving the accuracy. We confirm that the radial ww-projection kernel is accurate to approximately 1% by imaging the zero-spacing with an added ww-term. We demonstrate the potential of our radially symmetric ww-projection kernel via sparse image reconstruction, using the software package PURIFY. We develop a distributed ww-stacking and ww-projection hybrid algorithm. We apply this algorithm to individually correct for non-coplanar effects in 17.5 million visibilities over a 2525 by 2525 degree field of view MWA observation for image reconstruction. Such a level of accuracy and scalability is not possible with standard ww-projection kernel generation methods. This demonstrates that we can scale to a large number of measurements with large image sizes whilst still maintaining both speed and accuracy.Comment: 9 Figures, 19 Pages. Accepted to Ap
    corecore