666 research outputs found
A prospective cohort study measuring cost-benefit analysis of the Otago Exercise Programme in Community Dwelling Adults with Rheumatoid Arthritis
Det er en sammenheng mellom bachelorstudentenes karakterpoeng fra videregående skole og resultater til eksamen i anatomi, fysiologi, biokjemi (AFB). Enkelte studenter med lavere opptakskarakterer enn landsgjennomsnittet oppnådde bedre eksamensresultat enn det nasjonale gjennomsnittsresultatet i AFB for 2016. Hensikten med studien var å undersøke hvordan bachelorstudenter i sykepleie med lave opptakspoeng og gode eksamensresultater i AFB lærte og tilegnet seg emnet. Studien har et kvalitativ forskningsdesign og det ble gjennomført semistrukturerte intervju av 12 bachelorstudenter i sykepleie, som ble analysert ved hjelp av innholdsanalyse. Funnene er beskrevet ut fra tre hovedkategorier: A) Relevansen til sykepleieryrket styrker læring, B) tilhørighet har betydning for læring, og C) læring skjer i samarbeid med andre. Vi fant at studentene lærte AFB mer inngående i samhandling med andre studenter. Samlinger på campus er viktig for studenters læring, til tross for at det er stort fokus på fleksible utdanninger og digitale pedagogiske metoder. Selvstendig arbeid kombinert med læring i et sosialt studentfellesskap, oppgis som motivasjonsfaktorer til målrettet arbeid med studiene. Studentene erfarer mestringsforventning, i et miljø som preges av anerkjennelse og samtidig gir opplevelse av tilhørighet. Studentene vektlegger studienes relevans sett i lys av det profesjonsyrket som de utdanner seg til, som en betydningsfull motivasjonsfaktor for læring.publishedVersio
Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma
Dielectric barrier discharge (DBD) air plasma is a novel technique for in-package decontamination of food, but it has not been yet applied to the packaging material. Characterization of commercial polylactic acid (PLA) films was done after in-package DBD plasma treatment at different voltages and treatment times to evaluate its suitability as food packaging material. DBD plasma increased the roughness of PLA film mainly at the site in contact with high voltage electrode at both the voltage levels of 70 and 80 kV. DBD plasma treatments did not induce any change in the glass transition temperature, but significant increase in the initial degradation temperature and maximum degradation temperature was observed. DBD plasma treatment did not adversely affect the oxygen and water vapor permeability of PLA. A very limited overall migration was observed in different food simulants and was much below the regulatory limits. Industrial relevance: In-package DBD plasma is a novel and innovative approach for the decontamination of foods with potential industrial application. This paper assesses the suitability of PLA as food packaging material for cold plasma treatment. It characterizes the effect of DBD plasma on the packaging material when used for in-package decontamination of food. The work described in this research offers a promising alternative to classical methods used in fruit and vegetable industries where in-package DBD plasma can serve as an effective decontamination process and avoids any post-process recontamination or hazards from the package itself
Surface, Thermal and Antimicrobial Release Properties of Plasma-Treated Zein Films
The effects of dielectric barrier discharge plasma treatment on zein film containing thymol as an active ingredient were evaluated. The plasma discharge was optically characterized to identify the reactive species. A significant increase in the film roughness (p 0.05) was observed for the thermal properties of the antimicrobial films after DBD plasma treatment
Camelpox virus encodes a schlafen-like protein that affects orthopoxvirus virulence.
Camelpox virus (CMLV) gene 176R encodes a protein with sequence similarity to murine schlafen (m-slfn) proteins. In vivo, short and long members of the m-slfn family inhibited T-cell development, whereas in vitro, only short m-slfns caused arrest of fibroblast growth. CMLV 176 protein (v-slfn) is most closely related to short m-slfns; however, when expressed stably in mammalian cells, v-slfn did not inhibit cell growth. v-slfn is a predominantly cytoplasmic 57 kDa protein that is expressed throughout infection. Several other orthopoxviruses encode v-slfn proteins, but the v-slfn gene is fragmented in all sequenced variola virus and vaccinia virus (VACV) strains. Consistent with this, all 16 VACV strains tested do not express a v-slfn detected by polyclonal serum raised against the CMLV protein. In the absence of a small animal model to study CMLV pathogenesis, the contribution of CMLV v-slfn to orthopoxvirus virulence was studied via its expression in an attenuated strain of VACV. Recombinant viruses expressing wild-type v-slfn or v-slfn tagged at its C terminus with a haemagglutinin (HA) epitope were less virulent than control viruses. However, a virus expressing v-slfn tagged with the HA epitope at its N terminus had similar virulence to controls, implying that the N terminus has an important function. A greater recruitment of lymphocytes into infected lung tissue was observed in the presence of wild-type v-slfn but, interestingly, these cells were less activated. Thus, v-slfn is an orthopoxvirus virulence factor that affects the host immune response to infection
An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation
Different immune activation states require distinct metabolic features and activities in immune cells. For instance, inhibition of fatty acid synthase (FASN), which catalyzes the synthesis of long-chain fatty acids, prevents the proinflammatory response in macrophages; however, the precise role of this enzyme in this response remains poorly defined. Consistent with previous studies, we found here that FASN is essential for lipopolysaccharide-induced, Toll-like receptor (TLR)-mediated macrophage activation. Interestingly, only agents that block FASN upstream of acetoacetyl-CoA synthesis, including the well-characterized FASN inhibitor C75, inhibited TLR4 signaling, while those acting downstream had no effect. We found that acetoacetyl-CoA could overcome C75's inhibitory effect, whereas other FASN metabolites, including palmitate, did not prevent C75-mediated inhibition. This suggested an unexpected role for acetoacetyl-CoA in inflammation that is independent of its role in palmitate synthesis. Our evidence further suggested that acetoacetyl-CoA arising from FASN activity promotes cholesterol production, indicating a surprising link between fatty acid synthesis and cholesterol synthesis. We further demonstrate that this process is required for TLR4 to enter lipid rafts and facilitate TLR4 signaling. In conclusion, we have uncovered an unexpected link between FASN and cholesterol synthesis that appears to be required for TLR signal transduction and proinflammatory macrophage activation
Toll-like receptors and NOD-like receptors in rheumatic diseases
The past 10 years have seen the description of families of receptors that drive proinflammatory cytokine production in infection and tissue injury. Two major classes have been examined in the context of inflammatory joint disease - the Toll-like receptors (TLRs) and NOD-like receptors (NLRs). TLRs such as TLR2 and TLR4 are being implicated in the pathology of rheumatoid arthritis, ankylosing spondylitis, lyme arthritis and osteoarthritis. Nalp3 has been identified as a key NLR for IL-1β production and has been shown to have a particular role in gout. These findings present new therapeutic opportunities, possibly allowing for the replacement of biologics with small molecule inhibitors
The MyD88+ phenotype is an adverse prognostic factor in epithelial ovarian cancer
The prognosis of epithelial ovarian cancer is poor in part due to the high frequency of chemoresistance. Recent evidence points to the Toll-like receptor-4 (TLR4), and particularly its adaptor protein MyD88, as one potential mediator of this resistance. This study aims to provide further evidence that MyD88 positive cancer cells are clinically significant, stem-like and reproducibly detectable for the purposes of prognostic stratification. Expression of TLR4 and MyD88 was assessed immunohistochemically in 198 paraffin-embedded ovarian tissues and in an embryonal carcinoma model of cancer stemness. In parallel, expression of TLR4 and MyD88 mRNA and regulatory microRNAs (miR-21 and miR-146a) was assessed, as well as in a series of chemosensitive and resistant cancer cells lines. Functional analysis of the pathway was assessed in chemoresistant SKOV-3 ovarian cancer cells. TLR4 and MyD88 expression can be reproducibly assessed via immunohistochemistry using a semi-quantitative scoring system. TLR4 expression was present in all ovarian epithelium (normal and neoplastic), whereas MyD88 was restricted to neoplastic cells, independent of tumour grade and associated with reduced progression-free and overall survival, in an immunohistological specific subset of serous carcinomas, p<0.05. MiR-21 and miR-146a expression was significantly increased in MyD88 negative cancers (p<0.05), indicating their participation in regulation. Significant alterations in MyD88 mRNA expression were observed between chemosensitive and chemoresistant cells and tissue. Knockdown of TLR4 in SKOV-3 ovarian cells recovered chemosensitivity. Knockdown of MyD88 alone did not. MyD88 expression was down-regulated in differentiated embryonal carcinoma (NTera2) cells, supporting the MyD88+ cancer stem cell hypothesis. Our findings demonstrate that expression of MyD88 is associated with significantly reduced patient survival and altered microRNA levels and suggest an intact/functioning TLR4/MyD88 pathway is required for acquisition of the chemoresistant phenotype. Ex vivo manipulation of ovarian cancer stem cell (CSC) differentiation can decrease MyD88 expression, providing a potentially valuable CSC model for ovarian cancer
The Cytokine Release Inhibitory Drug CRID3 Targets ASC Oligomerisation in the NLRP3 and AIM2 Inflammasomes
Background: The Inflammasomes are multi-protein complexes that regulate caspase-1 activation and the production of the pro-inflammatory cytokine IL-1 beta. Previous studies identified a class of diarylsulfonylurea containing compounds called Cytokine Release Inhibitory Drugs (CRIDs) that inhibited the post-translational processing of IL-1 beta. Further work identified Glutathione S-Transferase Omega 1 (GSTO1) as a possible target of these CRIDs. This study aimed to investigate the mechanism of the inhibitory activity of the CRID CP-456,773 (termed CRID3) in light of recent advances in the area of inflammasome activation, and to clarify the potential role of GSTO1 in the regulation of IL-1 beta production
- …
