34 research outputs found
A Selectable and Excisable Marker System for the Rapid Creation of Recombinant Poxviruses
Genetic manipulation of poxvirus genomes through attenuation, or insertion of therapeutic genes has led to a number of vector candidates for the treatment of a variety of human diseases. The development of recombinant poxviruses often involves the genomic insertion of a selectable marker for purification and selection purposes. The use of marker genes however inevitably results in a vector that contains unwanted genetic information of no therapeutic value.Here we describe an improved strategy that allows for the creation of marker-free recombinant poxviruses of any species. The Selectable and Excisable Marker (SEM) system incorporates a unique fusion marker gene for the efficient selection of poxvirus recombinants and the Cre/loxP system to facilitate the subsequent removal of the marker. We have defined and characterized this new methodological tool by insertion of a foreign gene into vaccinia virus, with the subsequent removal of the selectable marker. We then analyzed the importance of loxP orientation during Cre recombination, and show that the SEM system can be used to introduce site-specific deletions or inversions into the viral genome. Finally, we demonstrate that the SEM strategy is amenable to other poxviruses, as demonstrated here with the creation of an ectromelia virus recombinant lacking the EVM002 gene.The system described here thus provides a faster, simpler and more efficient means to create clinic-ready recombinant poxviruses for therapeutic gene therapy applications
The TESS-Keck Survey. XI. Mass Measurements for Four Transiting Sub-Neptunes Orbiting K Dwarf TOI-1246
Multiplanet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V = 11.6, K = 9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31, 5.90, 18.66, and 37.92 days. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97 +/- 0.06 R (circle plus), 2.47 +/- 0.08 R (circle plus), 3.46 +/- 0.09 R (circle plus), and 3.72 +/- 0.16 R (circle plus)) and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1 +/- 1.1 M (circle plus), 8.8 +/- 1.2 M (circle plus), 5.3 +/- 1.7 M (circle plus), and 14.8 +/- 2.3 M (circle plus)). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (P (e)/P ( d ) = 2.03) and exhibit transit-timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only five systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70 +/- 0.24 to 3.21 +/- 0.44 g cm(-3), implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 +/- 3.6 M (circle plus). This planet candidate is exterior to TOI-1246 e, with a candidate period of 93.8 days, and we discuss the implications if it is confirmed to be planetary in nature
The TESS-Keck Survey. XI. Mass Measurements for Four Transiting sub-Neptunes orbiting K dwarf TOI-1246
Multi-planet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V=11.6, K=9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31 d, 5.90 d, 18.66 d, and 37.92 d. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97±0.06 R⊕,2.47±0.08 R⊕,3.46±0.09 R⊕, 3.72±0.16 R⊕), and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1±1.1M⊕, 8.8±1.2M⊕, 5.3±1.7M⊕, 14.8±2.3M⊕). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (Pe/Pd=2.03) and exhibit transit timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only six systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70±0.24 to 3.21±0.44g/cm3, implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 ± 3.6 M⊕. This planet candidate is exterior to TOI-1246 e with a candidate period of 93.8 d, and we discuss the implications if it is confirmed to be planetary in nature
Type I Interferon Regulates Respiratory Virus Infected Dendritic Cell Maturation and Cytokine Production
Activation of dendritic cells (DCs) by viruses is critical for both innate and adaptive immune responses. In this report, we investigated the role of type I interferon (IFN) in the activation of DCs by respiratory syncytial virus (RSV). Using DCs from type I IFNR−/− mice, these studies indicate that maturation, including upregulation of co-stimulatory molecules and optimal cytokine production, by RSV infection was dependent on type I IFN receptor signaling. Subsequently, studies using DCs from wild type mice demonstrate that continued production of type I IFN during later stages of DC maturation could alter their activation profiles. IFN-α and IFN-β were upregulated in DCs grown from bone marrow of wild type mice after infection with RSV. In order to determine their function in competent DCs, blocking antibodies were used to specifically inhibit IFN-α/β . The data demonstrate that production of IFN-β, but not IFN-α, in RSV-infected wild type DCs promotes chemokine production and toll-like receptor (TLR) expression, while limiting IL-12 production. The inhibition of IL-12p70 by IFN-β correlated with suppressed IL-12p40 expression levels. Furthermore, the addition of recombinant IFN-β potently inhibited IL-12p40 expression in mature DC subsets during RSV infection, while only the highest dose of IFN-α had any inhibitory effect. Together, our studies provide insight into the complex regulation of DC maturation and IL-12 production co-ordinated by type I interferons in RSV-infected dendritic cells, and demonstrate that type I IFN has specific roles depending upon the stage of DC maturation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63352/1/vim.2007.0057.pd
TLR3 Increases Disease Morbidity and Mortality from Vaccinia Infection
Abstract
Innate immunity is required for effective control of poxvirus infections, but cellular receptors that initiate the host response to these DNA viruses remain poorly defined. Given this information and the fact that functions of TLRs in immunity to DNA viruses remain controversial, we investigated effects of TLR3 on pathogenesis of vaccinia virus, a prototype poxvirus. We used a recombinant strain Western Reserve vaccinia virus that expresses firefly luciferase to infect wild-type C57BL/6 and TLR3−/− mice through intranasal inoculation. Bioluminescence imaging showed that TLR3−/− mice had substantially lower viral replication in the respiratory tract and diminished dissemination of virus to abdominal organs. Mice lacking TLR3 had reduced disease morbidity, as measured by decreased weight loss and hypothermia after infection. Importantly, TLR3−/− mice also had improved survival relative to wild-type mice. Infected TLR3−/− mice had significantly reduced lung inflammation and recruitment of leukocytes to the lung. Mice lacking TLR3 also had lower levels of inflammatory cytokines, including IL-6, MCP-1, and TNF-α in serum and/or bronchoalveolar lavage fluid, but levels of IFN-β did not differ between genotypes of mice. To our knowledge, our findings show for the first time that interactions between TLR3 and vaccinia increase viral replication and contribute to detrimental effects of the host immune response to poxviruses.</jats:p
Inhibiting CXCR4 reduces immunosuppressive effects of myeloid cells in breast cancer immunotherapy
Abstract Patients with triple negative breast cancer (TNBC) show only modest response rates to immune checkpoint inhibitor immunotherapy, motivating ongoing efforts to identify approaches to boost efficacy. Using an immunocompetent mouse model of TNBC, we investigated combination therapy with an anti-PD-1 immunotherapy antibody plus balixafortide, a cyclic peptide inhibitor of CXCR4. Cell-based assays demonstrated that balixafortide functions as an inverse agonist, establishing a mode of action distinct from most compounds targeting CXCR4. Combination anti-PD-1 plus balixafortide significantly reduced growth of orthotopic tumors and extended overall survival relative to single agent therapy or vehicle. Adding balixafortide to anti-PD-1 increased numbers of tertiary lymphoid structures, a marker of local tumor immune responses associated with favorable response to immunotherapy in TNBC. Single cell RNA sequencing revealed that combination anti-PD-1 plus balixafortide reduced T cell exhaustion and increased markers of effector T cell activity. Combination therapy also reduced signatures of immunosuppressive myeloid derived suppressor cells (MDSCs) in tumors. MDSCs isolated from mice treated with anti-PD-1 plus balixafortide showed reduced inhibition of T cell proliferation following ex vivo stimulation. These studies demonstrate that combining inhibition of CXCR4 with anti-PD-1 to enhances responses to checkpoint inhibitor immunotherapy in TNBC, supporting future clinical trials
Evaluating immunotherapeutic outcomes in triple-negative breast cancer with a cholesterol radiotracer in mice
Evaluating the response to immune checkpoint inhibitors (ICIs) remains an unmet challenge in triple-negative breast cancer (TNBC). The requirement for cholesterol in the activation and function of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged the PET radiotracer, eFNP-59. eFNP-59 is an analog of cholesterol that our group validated as an imaging biomarker for cholesterol uptake in preclinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing ICI-responsive and -nonresponsive tumors directly, uptake of fluorescent cholesterol and eFNP-59 increased in T cells from ICI-responsive tumors. We discovered that accumulation of cholesterol by T cells increased in ICI-responding tumors that received anti–PD-1 checkpoint immunotherapy. In patients with TNBC, tumors containing cycling T cells had features of cholesterol uptake and trafficking within those populations. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells allows detection of T cell activation and has potential to assess the success of ICI therapy
