889 research outputs found

    MicroRNA-551b expression profile in low and high-grade cervical intraepithelial neoplasia

    Get PDF
    OBJECTIVE: To evaluate the expression of microRNA (miR)-551b in patients with low and high grade cervical intraepithelial neoplasia (CIN) and to find an association with high-risk Human Papillomavirus (HR-HPV) infection-related prognostic biomarkers. PATIENTS AND METHODS: The expression level of miR-551b was determined in 50 paraffin-embedded cervical specimens (10 normal squamous epithelium, 18 condylomas, 8 CIN1, and 14 CIN2-3) using quantitative Real-time polymerase chain reaction (qRT-PCR). χ2-test compared miR-551b expression in different diagnosis groups. An Ordered Logistic Regression and a Probit correlation were made to correlate miR-551b expression levels with the cervical tissue histological findings. The immunohistochemical distribution of p16 and Ki-67 according to histopathological findings was also assessed. RESULTS: The distribution of the miR-551b expression profile was significantly lower in CIN1-3 samples compared to other histological diagnosis groups (condyloma and negative). The expression levels were inversely correlated to the cervical pathological grade, from negative to CIN2-3. A 1% increase in miR-551b expression level produced an increase of 19% to the probability of a minor histological grade diagnosis in a range from negative to CIN2-3 and an increase of 13% to the probability of a negative histological grade diagnosis. Among the cases with miR-551b expression < 0.02 (considered as cut-off value) a significant statistical correlation was found between p16 and Ki-67 expression and the diagnosis of CIN2-3. CONCLUSIONS: O ur d ata s howed a s ignificant inverse correlation between miR-551b expression and the histological grading of the lesions, suggesting a tumor suppressive function in the different stages of cervical dysplasia

    Pointwise consistency of the kriging predictor with known mean and covariance functions

    Full text link
    This paper deals with several issues related to the pointwise consistency of the kriging predictor when the mean and the covariance functions are known. These questions are of general importance in the context of computer experiments. The analysis is based on the properties of approximations in reproducing kernel Hilbert spaces. We fix an erroneous claim of Yakowitz and Szidarovszky (J. Multivariate Analysis, 1985) that the kriging predictor is pointwise consistent for all continuous sample paths under some assumptions.Comment: Submitted to mODa9 (the Model-Oriented Data Analysis and Optimum Design Conference), 14th-19th June 2010, Bertinoro, Ital

    CMB photons shedding light on dark matter

    Full text link
    The annihilation or decay of Dark Matter (DM) particles could affect the thermal history of the universe and leave an observable signature in Cosmic Microwave Background (CMB) anisotropies. We update constraints on the annihilation rate of DM particles in the smooth cosmological background, using WMAP7 and recent small-scale CMB data. With a systematic analysis based on the Press-Schechter formalism, we also show that DM annihilation in halos at small redshift may explain entirely the reionization patterns observed in the CMB, under reasonable assumptions concerning the concentration and formation redshift of halos. We find that a mixed reionization model based on DM annihilation in halos as well as star formation at a redshift z~6.5 could simultaneously account for CMB observations and satisfy constraints inferred from the Gunn-Peterson effect. However, these models tend to reheat the inter-galactic medium (IGM) well above observational bounds: by including a realistic prior on the IGM temperature at low redshift, we find stronger cosmological bounds on the annihilation cross-section than with the CMB alone.Comment: 35 pages, 14 figures; version accepted in JCAP after minor revision

    Electron-ion recombination for Fe VIII forming Fe VII and Fe IX forming Fe VIII: measurements and theory

    Get PDF
    The photorecombination rate coefficients of potassium-like Fe VIII ions forming calcium-like Fe VII and of argon-like Fe IX forming potassium-like Fe VIII were measured by employing the merged electron-ion beams method at the Heidelberg heavy-ion storage-ring TSR. New theoretical calculations with the AUTOSTRUCTURE code were carried out for dielectronic recombination (DR) and trielectronic recombination (TR) for both ions. We compare these experimental and theoretical results and also compare with previously recommended rate coefficients. The DR and TR resonances were experimentally investigated in the electron-ion collision energy ranges 0-120 eV and 0-151 eV for Fe VIII and Fe IX. Experimentally derived Fe VIII and Fe IX DR + TR plasma rate coefficients are provided in the temperature range kBT=0.2 to 1000eV. Their uncertainties amount to ±26% and ±35% at a 90% confidence level for Fe VIII and Fe IX, respectively

    Andreev reflection and order parameter symmetry in heavy-fermion superconductors: the case of CeCoIn5_5

    Full text link
    We review the current status of Andreev reflection spectroscopy on the heavy fermions, mostly focusing on the case of CeCoIn5_5, a heavy-fermion superconductor with a critical temperature of 2.3 K. This is a well-established technique to investigate superconducting order parameters via measurements of the differential conductance from nanoscale metallic junctions. Andreev reflection is clearly observed in CeCoIn5_5 as in other heavy-fermion superconductors. The measured Andreev signal is highly reduced to the order of maximum \sim 13% compared to the theoretically predicted value (100%). Analysis of the conductance spectra using the extended BTK model provides a qualitative measure for the superconducting order parameter symmetry, which is determined to be dx2y2d_{x^2-y^2}-wave in CeCoIn5_5. A phenomenological model is proposed employing a Fano interference effect between two conductance channels in order to explain both the conductance asymmetry and the reduced Andreev signal. This model appears plausible not only because it provides good fits to the data but also because it is highly likely that the electrical conduction occurs via two channels, one into the heavy electron liquid and the other into the conduction electron continuum. Further experimental and theoretical investigations will shed new light on the mechanism of how the coherent heavy-electron liquid emerges out of the Kondo lattice, a prototypical strongly correlated electron system. Unresolved issues and future directions are also discussed.Comment: Topical Review published in JPCM (see below), 28 pages, 9 figure

    Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic

    Full text link
    We develop an iterative method for finding solutions to the hermitian Yang-Mills equation on stable holomorphic vector bundles, following ideas recently developed by Donaldson. As illustrations, we construct numerically the hermitian Einstein metrics on the tangent bundle and a rank three vector bundle on P^2. In addition, we find a hermitian Yang-Mills connection on a stable rank three vector bundle on the Fermat quintic.Comment: 25 pages, 2 figure

    The nature of the different zero-temperature phases in discrete two-dimensional spin glasses: Entropy, universality, chaos and cascades in the renormalization group flow

    Full text link
    The properties of discrete two-dimensional spin glasses depend strongly on the way the zero-temperature limit is taken. We discuss this phenomenon in the context of the Migdal-Kadanoff renormalization group. We see, in particular, how these properties are connected with the presence of a cascade of fixed points in the renormalization group flow. Of particular interest are two unstable fixed points that correspond to two different spin-glass phases at zero temperature. We discuss how these phenomena are related with the presence of entropy fluctuations and temperature chaos, and universality in this model.Comment: 14 pages, 5 figures, 2 table

    Production of neutron-rich nuclei in fragmentation reactions of 132Sn projectiles at relativistic energies

    Full text link
    The fragmentation of neutron-rich 132Sn nuclei produced in the fission of 238U projectiles at 950 MeV/u has been investigated at the FRagment Separator (FRS) at GSI. This work represents the first investigation of fragmentation of medium-mass radioactive projectiles with a large neutron excess. The measured production cross sections of the residual nuclei are relevant for the possible use of a two-stage reaction scheme (fission+fragmentation) for the production of extremely neutron-rich medium-mass nuclei in future rare-ion-beam facilities. Moreover, the new data will provide a better understanding of the "memory" effect in fragmentation reactions.Comment: 5 pages, 3 figure
    corecore