889 research outputs found
MicroRNA-551b expression profile in low and high-grade cervical intraepithelial neoplasia
OBJECTIVE: To evaluate the expression of microRNA (miR)-551b in patients with low and high grade cervical intraepithelial neoplasia (CIN) and to find an association with high-risk Human Papillomavirus (HR-HPV) infection-related prognostic biomarkers.
PATIENTS AND METHODS: The expression level of miR-551b was determined in 50 paraffin-embedded cervical specimens (10 normal squamous epithelium, 18 condylomas, 8 CIN1, and 14 CIN2-3) using quantitative Real-time polymerase chain reaction (qRT-PCR). χ2-test compared miR-551b expression in different diagnosis groups. An Ordered Logistic Regression and a Probit correlation were made to correlate miR-551b expression levels with the cervical tissue histological findings. The immunohistochemical distribution of p16 and Ki-67 according to histopathological findings was also assessed.
RESULTS: The distribution of the miR-551b expression profile was significantly lower in CIN1-3 samples compared to other histological diagnosis groups (condyloma and negative). The expression levels were inversely correlated to the cervical pathological grade, from negative to CIN2-3. A 1%
increase in miR-551b expression level produced an increase of 19% to the probability of a minor histological grade diagnosis in a range from negative
to CIN2-3 and an increase of 13% to the probability of a negative histological grade diagnosis. Among the cases with miR-551b expression < 0.02
(considered as cut-off value) a significant statistical correlation was found between p16 and Ki-67 expression and the diagnosis of CIN2-3.
CONCLUSIONS: O ur d ata s howed a s ignificant inverse correlation between miR-551b expression and the histological grading of the lesions,
suggesting a tumor suppressive function in the different stages of cervical dysplasia
Pointwise consistency of the kriging predictor with known mean and covariance functions
This paper deals with several issues related to the pointwise consistency of
the kriging predictor when the mean and the covariance functions are known.
These questions are of general importance in the context of computer
experiments. The analysis is based on the properties of approximations in
reproducing kernel Hilbert spaces. We fix an erroneous claim of Yakowitz and
Szidarovszky (J. Multivariate Analysis, 1985) that the kriging predictor is
pointwise consistent for all continuous sample paths under some assumptions.Comment: Submitted to mODa9 (the Model-Oriented Data Analysis and Optimum
Design Conference), 14th-19th June 2010, Bertinoro, Ital
CMB photons shedding light on dark matter
The annihilation or decay of Dark Matter (DM) particles could affect the
thermal history of the universe and leave an observable signature in Cosmic
Microwave Background (CMB) anisotropies. We update constraints on the
annihilation rate of DM particles in the smooth cosmological background, using
WMAP7 and recent small-scale CMB data. With a systematic analysis based on the
Press-Schechter formalism, we also show that DM annihilation in halos at small
redshift may explain entirely the reionization patterns observed in the CMB,
under reasonable assumptions concerning the concentration and formation
redshift of halos. We find that a mixed reionization model based on DM
annihilation in halos as well as star formation at a redshift z~6.5 could
simultaneously account for CMB observations and satisfy constraints inferred
from the Gunn-Peterson effect. However, these models tend to reheat the
inter-galactic medium (IGM) well above observational bounds: by including a
realistic prior on the IGM temperature at low redshift, we find stronger
cosmological bounds on the annihilation cross-section than with the CMB alone.Comment: 35 pages, 14 figures; version accepted in JCAP after minor revision
Recommended from our members
Experimental rate coefficient for dielectronic recombination of neonlike iron forming sodiumlike iron
The rate coefficient for dielectronic recombination (DR) of Ne-like Fe16+ forming Na-like Fe15+ was measured employing the merged electron-ion beams technique at the heavy-ion storage-ring TSR of the Max-Planck-Institut für Kernphysik in Heidelberg, Germany. In the electron-ion collision energy range of 240–840 eV the merged-beams recombination rate coefficient is dominated by DR associated with 2s2 2p6 1S0 → 2s2 2p5 3d 1P1 core excitation. The experimental Fe16+ DR plasma rate coefficient is derived from the measured merged-beams rate coefficient. It is in good agreement with recent theoretical results
Electron-ion recombination for Fe VIII forming Fe VII and Fe IX forming Fe VIII: measurements and theory
The photorecombination rate coefficients of potassium-like Fe VIII ions forming calcium-like Fe VII and of argon-like Fe IX forming potassium-like Fe VIII were measured by employing the merged electron-ion beams method at the Heidelberg heavy-ion storage-ring TSR. New theoretical calculations with the AUTOSTRUCTURE code were carried out for dielectronic recombination (DR) and trielectronic recombination (TR) for both ions. We compare these experimental and theoretical results and also compare with previously recommended rate coefficients. The DR and TR resonances were experimentally investigated in the electron-ion collision energy ranges 0-120 eV and 0-151 eV for Fe VIII and Fe IX. Experimentally derived Fe VIII and Fe IX DR + TR plasma rate coefficients are provided in the temperature range kBT=0.2 to 1000eV. Their uncertainties amount to ±26% and ±35% at a 90% confidence level for Fe VIII and Fe IX, respectively
Andreev reflection and order parameter symmetry in heavy-fermion superconductors: the case of CeCoIn
We review the current status of Andreev reflection spectroscopy on the heavy
fermions, mostly focusing on the case of CeCoIn, a heavy-fermion
superconductor with a critical temperature of 2.3 K. This is a well-established
technique to investigate superconducting order parameters via measurements of
the differential conductance from nanoscale metallic junctions. Andreev
reflection is clearly observed in CeCoIn as in other heavy-fermion
superconductors. The measured Andreev signal is highly reduced to the order of
maximum 13% compared to the theoretically predicted value (100%).
Analysis of the conductance spectra using the extended BTK model provides a
qualitative measure for the superconducting order parameter symmetry, which is
determined to be -wave in CeCoIn. A phenomenological model is
proposed employing a Fano interference effect between two conductance channels
in order to explain both the conductance asymmetry and the reduced Andreev
signal. This model appears plausible not only because it provides good fits to
the data but also because it is highly likely that the electrical conduction
occurs via two channels, one into the heavy electron liquid and the other into
the conduction electron continuum. Further experimental and theoretical
investigations will shed new light on the mechanism of how the coherent
heavy-electron liquid emerges out of the Kondo lattice, a prototypical strongly
correlated electron system. Unresolved issues and future directions are also
discussed.Comment: Topical Review published in JPCM (see below), 28 pages, 9 figure
Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic
We develop an iterative method for finding solutions to the hermitian
Yang-Mills equation on stable holomorphic vector bundles, following ideas
recently developed by Donaldson. As illustrations, we construct numerically the
hermitian Einstein metrics on the tangent bundle and a rank three vector bundle
on P^2. In addition, we find a hermitian Yang-Mills connection on a stable rank
three vector bundle on the Fermat quintic.Comment: 25 pages, 2 figure
The nature of the different zero-temperature phases in discrete two-dimensional spin glasses: Entropy, universality, chaos and cascades in the renormalization group flow
The properties of discrete two-dimensional spin glasses depend strongly on
the way the zero-temperature limit is taken. We discuss this phenomenon in the
context of the Migdal-Kadanoff renormalization group. We see, in particular,
how these properties are connected with the presence of a cascade of fixed
points in the renormalization group flow. Of particular interest are two
unstable fixed points that correspond to two different spin-glass phases at
zero temperature. We discuss how these phenomena are related with the presence
of entropy fluctuations and temperature chaos, and universality in this model.Comment: 14 pages, 5 figures, 2 table
Production of neutron-rich nuclei in fragmentation reactions of 132Sn projectiles at relativistic energies
The fragmentation of neutron-rich 132Sn nuclei produced in the fission of
238U projectiles at 950 MeV/u has been investigated at the FRagment Separator
(FRS) at GSI. This work represents the first investigation of fragmentation of
medium-mass radioactive projectiles with a large neutron excess. The measured
production cross sections of the residual nuclei are relevant for the possible
use of a two-stage reaction scheme (fission+fragmentation) for the production
of extremely neutron-rich medium-mass nuclei in future rare-ion-beam
facilities. Moreover, the new data will provide a better understanding of the
"memory" effect in fragmentation reactions.Comment: 5 pages, 3 figure
- …
