945 research outputs found
A comprehensive approach to MPSoC security: achieving network-on-chip security : a hierarchical, multi-agent approach
Multiprocessor Systems-on-Chip (MPSoCs) are pervading our lives, acquiring ever increasing relevance in a large number of applications, including even safety-critical ones. MPSoCs, are becoming increasingly complex and heterogeneous; the Networks on Chip (NoC paradigm has been introduced to support scalable on-chip communication, and (in some cases) even with reconfigurability support. The increased complexity as well as the networking approach in turn make security aspects more critical. In this work we propose and implement a hierarchical multi-agent approach providing solutions to secure NoC based MPSoCs at different levels of design. We develop a flexible, scalable and modular structure that integrates protection of different elements in the MPSoC (e.g. memory, processors) from different attack scenarios. Rather than focusing on protection strategies specifically devised for an individual attack or a particular core, this work aims at providing a comprehensive, system-level protection strategy: this constitutes its main methodological contribution. We prove feasibility of the concepts via prototype realization in FPGA technology
The influence of statistical properties of Fourier coefficients on random surfaces
Many examples of natural systems can be described by random Gaussian
surfaces. Much can be learned by analyzing the Fourier expansion of the
surfaces, from which it is possible to determine the corresponding Hurst
exponent and consequently establish the presence of scale invariance. We show
that this symmetry is not affected by the distribution of the modulus of the
Fourier coefficients. Furthermore, we investigate the role of the Fourier
phases of random surfaces. In particular, we show how the surface is affected
by a non-uniform distribution of phases
Impact of embedding on predictability of failure-recovery dynamics in networks
Failure, damage spread and recovery crucially underlie many spatially
embedded networked systems ranging from transportation structures to the human
body. Here we study the interplay between spontaneous damage, induced failure
and recovery in both embedded and non-embedded networks. In our model the
network's components follow three realistic processes that capture these
features: (i) spontaneous failure of a component independent of the
neighborhood (internal failure), (ii) failure induced by failed neighboring
nodes (external failure) and (iii) spontaneous recovery of a component.We
identify a metastable domain in the global network phase diagram spanned by the
model's control parameters where dramatic hysteresis effects and random
switching between two coexisting states are observed. The loss of
predictability due to these effects depend on the characteristic link length of
the embedded system. For the Euclidean lattice in particular, hysteresis and
switching only occur in an extremely narrow region of the parameter space
compared to random networks. We develop a unifying theory which links the
dynamics of our model to contact processes. Our unifying framework may help to
better understand predictability and controllability in spatially embedded and
random networks where spontaneous recovery of components can mitigate
spontaneous failure and damage spread in the global network.Comment: 22 pages, 20 figure
Synthetic Pulmonary Surfactant Preparations: New developments and future trends
Pulmonary surfactant is a lipid-protein complex that coats the interior of the alveoli and enables the lungs to function properly. Upon its synthesis, lung surfactant adsorbs at the interface between the air and the hypophase, a capillary aqueous layer covering the alveoli. By lowering and modulating surface tension during breathing, lung surfactant reduces respiratory work of expansion, and stabilises alveoli against collapse during expiration. Pulmonary surfactant deficiency, or dysfunction, contributes to several respiratory pathologies, such as infant respiratory distress syndrome (IRDS) in premature neonates, and acute respiratory distress syndrome (ARDS) in children and adults. The main clinical exogenous surfactants currently in use to treat some of these pathologies are essentially organic extracts obtained from animal lungs. Although very efficient, natural surfactants bear serious defects: i) they could vary in composition from batch to batch; ii) their production involves relatively high costs, and sources are limited; and iii) they carry a potential risk of transmission of animal infectious agents and the possibility of immunological reaction. All these caveats justify the necessity for a highly controlled synthetic material. In the present review the efforts aimed at new surfactant development, including the modification of existing exogenous surfactants by adding molecules that can enhance their activity, and the progress achieved in the production of completely new preparations, are discussed
A DSL for PIM specifications: design and attribute grammar based implementation
IIS*Case is a model driven software tool that provides information system modeling and prototype generation. It comprises visual and repository based tools for creating various platform independent model (PIM) specifications that are latter transformed into the other, platform specific specifications, and finally to executable programs. Apart from having PIMs stored as repository definitions, we need to have their equivalent representation in the form of a domain specific language. One of the main reasons for this is to allow for checking the formal correctness of PIMs being created. In the paper, we present such a meta-language, named IIS*CDesLang. IIS*CDesLang is specified by an attribute grammar (AG), created under a visual programming environment for AG specifications, named VisualLIS
An attribute grammar specification of IIS*Case PIM concepts
IIS*Case is a model driven software tool that provides information system modeling and prototypes generation. It comprises visual and repository based tools for creating various platform independent model (PIM) specifications that are latter transformed into the other, platform specific
specifications, and finally to executable programs. Apart from having PIMs stored as repository definitions, we need to have their equivalent representation in the form of a domain specific language. One of the main reasons for this is to allow for checking the formal correctness of PIMs being created. In the paper, we present such a meta-language, named IIS*CDesLang. IIS*CDesLang is specified by an attribute grammar (AG), created under a visual programming environment for AG specifications, named VisualLISA
PERMISSIBILITY OF APPROVAL AND OTHER FEES IN CONSUMER LOAN CONTRACTS IN SERBIA
Foreign-owned banks from the European Union dominate Serbia’s financial landscape. However, one of the controversies in the banking sector in the last decades has been approval and similar fees in loan contracts. The aim of this paper is to take a look at this issue through the lens of a consumer. Since there is no official data on the aggregate amount of processing, approval and similar fees in thousands of lawsuits against banks, the methodology in this research is largely based on the analysis of relevant legal acts and case law. A minor part is the statistical analysis of the context of the consolidation process in the banking sector in the last decade. The research has found multiple issues in the application of the rule of law in regard to consumer loans. Not only did banks prepare loan contracts with provisions that allowed them to deduct one-off payments of approval and similar fees from a loan amount, but customers may have paid for approving, disbursing and managing a loan twice or even multiple times. There were also cases showing that the process of approving a loan did not meet the requirements of providing the customer with adequate information in a pre-contractual phase, leading to questions on transparency and the balance between a bank and its customer. Future research would benefit from quantitative data about the amount of approval and similar fees in lawsuits and the exact number of lawsuits against banks in this respect
Monitoring Protein Kinases in Cellular Media with Highly Selective Chimeric Reporters
Protein kinases are important regulators of cellular function, and the dynamics of their activities are critical indicators of the health or pathology of living systems.[1, 2] In particular, extracellular-signal regulated kinases 1 and 2 (ERK1/2) play a pivotal role in the mitogen-activated protein kinase (MAPK) signaling pathway responsible for regulated cell survival and proliferation.[3] The centrality of these enzymes in normal and diseased cell states underscores the need for high throughput, selective, and sensitive methods that accurately and directly diagnose kinase activities. The benchmark phosphorylation assays for ERK1/2 rely on transfer of radioactive γ-phosphate of [γ-32P]ATP to peptide or protein substrates.[4] While broadly employed, this approach has limitations, including the discontinuous nature of the radioactive assay and the non-native ATP concentrations that are utilized. Alternatively, for cellular imaging, genetically-encoded sensors that rely on phosphorylation-based changes in fluorescence resonance energy transfer (FRET) between fluorescent protein pairs[5, 6] have been constructed for several kinases, including ERK1/2.[7-10] These sensors are powerful because they can be expressed in cells, however, they cannot be used for high throuput screening of recombinant enzymes and unfractionated cell lysates due to the very limited fluorescence changes that accompany phosphorylation. As a complementary approach, probes based on small, organic fluorophores with direct readouts[6, 11] can give sensitive and robust signals under physiogical conditions and are thus amenable to high throughput applications. For example, we have incorporated a sulfonamido-oxine (Sox) chromophore into peptides[12, 13] to report phosphorylation via chelation-enhanced fluorescence (CHEF) (Figure 1a). The weak binding affinity of the unphosphorylated substrate for Mg2+ increases significantly upon phosphorylation, resulting in robust (2- to 12-fold) fluorescence enhancements. This versatile peptide-based sensor design has been applied to monitor the activity of numerous Ser/Thr and Tyr kinases both in vitro[13] and in cell lysates.National Institutes of Health (U.S.) (NIH Cell Migration Consortium (GM064346)
- …
