102 research outputs found
Dynamics of Cloud-Top Generating Cells in Winter Cyclones. Part III: Shear and Convective Organization
Cloud-top generating cells (GCs) are a common feature atop stratiform clouds within the comma head of winter cyclones. The dynamics of cloud-top GCs are investigated using very high-resolution idealized WRF Model simulations to examine the role of shear in modulating the structure and intensity of GCs. Simulations were run for the same combinations of radiative forcing and instability as in Part II of this series, but with six different shear profiles ranging from 0 to 10ms21 km21 within the layer encompassing the GCs.
The primary role of shear was to modulate the organization of GCs, which organized as closed convective cells in simulations with radiative forcing and no shear. In simulations with shear and radiative forcing, GCs organized in linear streets parallel to the wind. No GCs developed in the initially stable simulations with no radiative forcing. In the initially unstable and neutral simulations with no radiative forcing or shear, GCs were exceptionally weak, with no clear organization. In moderate-shear (Du/Dz 5 2, 4ms21 km21) simulations with no radiative forcing, linear organization of the weak cells was apparent, but this organization was less coherent in simulations with high shear (Du/Dz 5 6, 8, 10ms21 km21). The intensity of the updrafts was primarily related to the mode of radiative forcing but was modulated by shear. The more intense GCs in nighttime simulations were either associated with no shear (closed convective cells) or strong shear (linear streets). Updrafts within GCs under conditions with radiative forcing were typically ;1–2 ms21 with maximum values , 4ms21
Recommended from our members
Anatomy of a summertime convective event over the Arabian region
This study investigates the structure and evolution of a summertime convective event that occurred on 14 July 2015 over the Arabian region. We use the WRF Model with 1-km horizontal grid spacing and test three PBL parameterizations: the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme; the Asymmetrical Convective Model, version 2, (ACM2) scheme; and the quasi-normal scale-elimination (QNSE) scheme. Convection initiates near the Al Hajar Mountains of northern Oman at around 1100 local time (LT; 0700 UTC) and propagates northwestward. A nonorographic convective band along the west coast of the United Arab Emirates (UAE) develops after 1500 LT as a result of the convergence of cold pools with the sea breeze from the Arabian Gulf. The model simulation employing the QNSE scheme simulates the convection initiation and propagation well. Although the MYNN and ACM2 simulations show convective initiation near the Al Hajar Mountains, they fail to simulate the development of the convective band along the UAE west coast. The MYNN run simulates colder near-surface temperatures and a weaker sea breeze, whereas the ACM2 run simulates a stronger sea breeze but a drier lower troposphere. Sensitivity simulations using horizontal grid spacings of 9 and 3 km show that lower-resolution runs develop broader convective structures and weaker cold pools and horizontal wind divergence, affecting the development of convection along the west coast of the UAE. The 1-km run using the QNSE PBL scheme realistically captures the sequence of events that leads to the moist convection over the UAE and adjacent mountains
Efeitos da azatioprina sobre a depuração mucociliar após secção e anastomose brônquica em um modelo experimental em ratos
The First Illumina-Based De Novo Transcriptome Sequencing and Analysis of Safflower Flowers
BACKGROUND: The safflower, Carthamus tinctorius L., is a worldwide oil crop, and its flowers, which have a high flavonoid content, are an important medicinal resource against cardiovascular disease in traditional medicine. Because the safflower has a large and complex genome, the development of its genomic resources has been delayed. Second-generation Illumina sequencing is now an efficient route for generating an enormous volume of sequences that can represent a large number of genes and their expression levels. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the genes and pathways that might control flavonoids and other secondary metabolites in the safflower, we used Illumina sequencing to perform a de novo assembly of the safflower tubular flower tissue transcriptome. We obtained a total of 4.69 Gb in clean nucleotides comprising 52,119,104 clean sequencing reads, 195,320 contigs, and 120,778 unigenes. Based on similarity searches with known proteins, we annotated 70,342 of the unigenes (about 58% of the identified unigenes) with cut-off E-values of 10(-5). In total, 21,943 of the safflower unigenes were found to have COG classifications, and BLAST2GO assigned 26,332 of the unigenes to 1,754 GO term annotations. In addition, we assigned 30,203 of the unigenes to 121 KEGG pathways. When we focused on genes identified as contributing to flavonoid biosynthesis and the biosynthesis of unsaturated fatty acids, which are important pathways that control flower and seed quality, respectively, we found that these genes were fairly well conserved in the safflower genome compared to those of other plants. CONCLUSIONS/SIGNIFICANCE: Our study provides abundant genomic data for Carthamus tinctorius L. and offers comprehensive sequence resources for studying the safflower. We believe that these transcriptome datasets will serve as an important public information platform to accelerate studies of the safflower genome, and may help us define the mechanisms of flower tissue-specific and secondary metabolism in this non-model plant
Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives
Deoxynivalenol (DON) is the major mycotoxin produced by Fusarium fungi in grains. Food and feed contaminated with DON pose a health risk to humans and livestock. The risk can be reduced by enzymatic detoxification. Complete mineralization of DON by microbial cultures has rarely been observed and the activities turned out to be unstable. The detoxification of DON by reactions targeting its epoxide group or hydroxyl on carbon 3 is more feasible. Microbial strains that de-epoxidize DON under anaerobic conditions have been isolated from animal digestive system. Feed additives claimed to de-epoxidize trichothecenes enzymatically are on the market but their efficacy has been disputed. A new detoxification pathway leading to 3-oxo-DON and 3-epi-DON was discovered in taxonomically unrelated soil bacteria from three continents; the enzymes involved remain to be identified. Arabidopsis, tobacco, wheat, barley, and rice were engineered to acetylate DON on carbon 3. In wheat expressing DON acetylation activity, the increase in resistance against Fusarium head blight was only moderate. The Tri101 gene from Fusarium sporotrichioides was used; Fusarium graminearum enzyme which possesses higher activity towards DON would presumably be a better choice. Glycosylation of trichothecenes occurs in plants, contributing to the resistance of wheat to F. graminearum infection. Marker-assisted selection based on the trichothecene-3-O-glucosyltransferase gene can be used in breeding for resistance. Fungal acetyltransferases and plant glucosyltransferases targeting carbon 3 of trichothecenes remain promising candidates for engineering resistance against Fusarium head blight. Bacterial enzymes catalyzing oxidation, epimerization, and less likely de-epoxidation of DON may extend this list in future
Chiropractic student choices in relation to indications, non-indications and contra-indications of continued care
Establishing the feasibility of the dosimetric compliance criteria of RTOG 1308: phase III randomized trial comparing overall survival after photon versus proton radiochemotherapy for inoperable stage II-IIIB NSCLC
Transcriptome sequencing, annotation and polymorphism detection in the hop bush, Dodonaea viscosa
The effect of herd formation among healthcare investors on health sector growth in China
- …
