199 research outputs found
Vortex Keratopathy in a Patient Receiving Vandetanib for Non-Small Cell Lung Cancer
We report a case of vortex keratopathy in a patient treated with vandetanib for non-small cell lung cancer (NSCLC). A 44-year-old female who underwent two cycles of chemotherapy for NSCLC complained of visual blurring in both eyes after the initiation of vandetanib, an anti-epidermal growth factor receptor (EGFR) and anti-vascular endothelial growth factor receptor 2 protein tyrosine kinase inhibitor. On ophthalmic examination, visual acuities were 20 / 20 OU and, with the exception of diffuse vortex keratopathy in both eyes, other findings were unremarkable. Vandetanib is believed to have caused vortex keratopathy in this patient. Anti-EGFR properties affecting normal corneal epithelial cell migration and wound healing or drug associated metabolite deposition, which is the case in numerous drug-associated vortex keratopathies, may be possible underlying mechanisms in the formation of this corneal complication
Possible Existence of Lysosome-Like Organella within Mitochondria and Its Role in Mitochondrial Quality Control
The accumulation of unhealthy mitochondria results in mitochondrial dysfunction, which has been implicated in aging, cancer, and a variety of degenerative diseases. However, the mechanism by which mitochondrial quality is regulated remains unclear. Here, we show that Mieap, a novel p53-inducible protein, induces intramitochondrial lysosome-like organella that plays a critical role in mitochondrial quality control. Mieap expression is directly regulated by p53 and is frequently lost in human cancer as result of DNA methylation. Mieap dramatically induces the accumulation of lysosomal proteins within mitochondria and mitochondrial acidic condition without destroying the mitochondrial structure (designated MALM, for Mieap-induced accumulation of lysosome-like organelles within mitochondria) in response to mitochondrial damage. MALM was not related to canonical autophagy. MALM is involved in the degradation of oxidized mitochondrial proteins, leading to increased ATP synthesis and decreased reactive oxygen species generation. These results suggest that Mieap induces intramitochondrial lysosome-like organella that plays a critical role in mitochondrial quality control by eliminating oxidized mitochondrial proteins. Cancer cells might accumulate unhealthy mitochondria due to p53 mutations and/or Mieap methylation, representing a potential cause of the Warburg effect
Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export
The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterol - like inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.Peer reviewe
The renal cortical interstitium: morphological and functional aspects
The renal interstitial compartment, situated between basement membranes of epithelia and vessels, contains two contiguous cellular networks. One network is formed by interstitial fibroblasts, the second one by dendritic cells. Both are in intimate contact with each other. Fibroblasts are interconnected by junctions and connected to basement membranes of vessels and tubules by focal adhesions. Fibroblasts constitute the “skeleton” of the kidney. In the renal cortex, fibroblasts produce erythropoietin and are distinguished from other interstitial cells by their prominent F-actin cytoskeleton, abundance of rough endoplasmic reticulum, and by ecto-5′-nucleotidase expression in their plasma membrane. The resident dendritic cells belong to the mononuclear phagocyte system and fulfil a sentinel function. They are characterized by their expression of MHC class II and CD11c. The central situation of fibroblasts suggests that signals from tubules, vessels, and inflammatory cells converge in fibroblasts and elicit an integrated response. Following tubular damage and inflammatory signals fibroblasts proliferate, change to the myofibroblast phenotype and increase their collagen production, potentially resulting in renal fibrosis. The acquisition of a profibrotic phenotype by fibroblasts in renal diseases is generally considered a main causal event in the progression of chronic renal failure. However, it might also be seen as a repair process
The Tricyclic Antidepressants Clomipramine and Citalopram Induce Apoptosis in Cultured Human Lymphocytes
Role of drug metabolism in protection against chlorphentermine-induced pulmonary phospholipidosis in adult rat
The effects of chlorphentermine and phentermine on certain metabolic parameters associated with development of rat kidney and liver
Induction and reversal of pulmonary lipid histiocytosis in rats following oral administration of anorectics cloforex and chlorphentermine
Biochemical characteristics of rat alveolar macrophages with chlorphentermine-induced phospholipidosis: Variations with increasing cell size
- …
