3,777 research outputs found

    Flow cytometry analyses of adipose tissue macrophages

    Get PDF
    Within adipose tissue, multiple leukocyte interactions contribute to metabolic homeostasis in health as well as to the pathogenesis of insulin resistance with obesity. Adipose tissue macrophages (ATMs) are the predominant leukocyte population in fat and contribute to obesity-induced inflammation. Characterization of ATMs and other leukocytes in the stromal vascular fraction from fat has benefited from the use of flow cytometry and flow-assisted cell sorting techniques. These methods permit the immunophenotyping, quantification, and purification of these unique cell populations from multiple adipose tissue depots in rodents and humans. Proper isolation, quantification, and characterization of ATM phenotypes are critical for understanding their role in adipose tissue function and obesity-induced metabolic diseases. Here, we present the flow cytometry protocols for phenotyping ATMs in lean and obese mice employed by our laboratory

    Obesity‐Related Hormones in Low‐Income Preschool‐Age Children: Implications for School Readiness

    Full text link
    Mechanisms underlying socioeconomic disparities in school readiness and health outcomes, particularly obesity, among preschool‐aged children are complex and poorly understood. Obesity can induce changes in proteins in the circulation that contribute to the negative impact of obesity on health; such changes may relate to cognitive and emotion regulation skills important for school readiness. We investigated obesity‐related hormones, body mass index ( BMI ), and school readiness in a pilot study of low‐income preschoolers attending Head Start (participating in a larger parent study). We found that the adipokine leptin was related to preschoolers' BMI z ‐score, the appetite‐regulating hormones ghrelin and glucagon‐like peptide 1 ( GLP ‐1), and pro‐inflammatory cytokines typically associated with early life stress; and that some of these obesity‐related biomarkers were in turn related to emotion regulation. Future work should evaluate how obesity may affect multiple domains of development, and consider modeling common physiological pathways related to stress, health, and school readiness.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101799/1/mbe12034.pd

    Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated-skeletal muscle insulin resistance

    Get PDF
    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation

    The alcohol-preferring (P) and high-alcohol-drinking (HAD) rats – Animal Models of Alcoholism

    Get PDF
    The objective of this article is to review the literature on the utility of using the selectively bred alcohol-preferring (P) and high-alcohol-drinking (HAD) lines of rats in studies examining high alcohol drinking in adults and adolescents, craving-like behavior, and the co-abuse of alcohol with other drugs. The P line of rats meets all of the originally proposed criteria for a suitable animal model of alcoholism. In addition, the P rat exhibits high alcohol-seeking behavior, demonstrates an alcohol deprivation effect (ADE) under relapse drinking conditions, consumes amounts of ethanol during adolescence equivalent to those consumed in adulthood, and co-abuses ethanol and nicotine. The P line also exhibits excessive binge-like alcohol drinking, attaining blood alcohol concentrations (BACs) of 200 mg% on a daily basis. The HAD replicate lines of rats have not been as extensively studied as the P rats. The HAD1,2 rats satisfy several of the criteria for an animal model of alcoholism, e.g., these rats will voluntarily consume ethanol in a free-choice situation to produce BACs between 50–200 mg%. The HAD1,2 rats also exhibit an ADE under repeated relapse conditions, and will demonstrate similar levels of ethanol intake during adolescence as seen in adults. Overall, the P and HAD1,2 rats have characteristics attributed to an early onset alcoholic, and can be used to study various aspects of alcohol use disorders

    A subcutaneous adipose tissue-liver signalling axis controls hepatic gluconeogenesis.

    Get PDF
    The search for effective treatments for obesity and its comorbidities is of prime importance. We previously identified IKK-ε and TBK1 as promising therapeutic targets for the treatment of obesity and associated insulin resistance. Here we show that acute inhibition of IKK-ε and TBK1 with amlexanox treatment increases cAMP levels in subcutaneous adipose depots of obese mice, promoting the synthesis and secretion of the cytokine IL-6 from adipocytes and preadipocytes, but not from macrophages. IL-6, in turn, stimulates the phosphorylation of hepatic Stat3 to suppress expression of genes involved in gluconeogenesis, in the process improving glucose handling in obese mice. Preliminary data in a small cohort of obese patients show a similar association. These data support an important role for a subcutaneous adipose tissue-liver axis in mediating the acute metabolic benefits of amlexanox on glucose metabolism, and point to a new therapeutic pathway for type 2 diabetes

    Otopetrin 1 protects mice from obesity-associated metabolic dysfunction through attenuating adipose tissue inflammation.

    Get PDF
    Chronic low-grade inflammation is emerging as a pathogenic link between obesity and metabolic disease. Persistent immune activation in white adipose tissue (WAT) impairs insulin sensitivity and systemic metabolism, in part, through the actions of proinflammatory cytokines. Whether obesity engages an adaptive mechanism to counteract chronic inflammation in adipose tissues has not been elucidated. Here we identified otopetrin 1 (Otop1) as a component of a counterinflammatory pathway that is induced in WAT during obesity. Otop1 expression is markedly increased in obese mouse WAT and is stimulated by tumor necrosis factor-α in cultured adipocytes. Otop1 mutant mice respond to high-fat diet with pronounced insulin resistance and hepatic steatosis, accompanied by augmented adipose tissue inflammation. Otop1 attenuates interferon-γ (IFN-γ) signaling in adipocytes through selective downregulation of the transcription factor STAT1. Using a tagged vector, we found that Otop1 physically interacts with endogenous STAT1. Thus, Otop1 defines a unique target of cytokine signaling that attenuates obesity-induced adipose tissue inflammation and plays an adaptive role in maintaining metabolic homeostasis in obesity

    Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight.

    Get PDF
    Neuropeptide Y (NPY) is widely expressed in the central nervous system and influences many physiological processes. It is located within the rat quantitative trait locus (QTL) for alcohol preference on chromosome 4. Alcohol-nonpreferring (NP) rats consume very little alcohol, but have significantly higher NPY expression in the brain than alcohol-preferring (P) rats. We capitalized on this phenotypic difference by creating an Npy knockout (KO) rat using the inbred NP background to evaluate NPY effects on alcohol consumption. Zinc finger nuclease (ZNF) technology was applied, resulting in

    Cis‐acting allele specific expression (ASE) differences induced by alcohol and impacted by sex as well as parental genotype of origin

    Get PDF
    Background Alcohol use disorders (AUDs) are influenced by complex interactions between the genetics of the individual and their environment. We have previously identified hundreds of polygenic genetic variants between the selectively bred high and low alcohol drinking (HAD and LAD) rat lines. Here we report allele specific expression (ASE) differences, between the HAD2 and LAD2 rat lines. Methods The HAD2 and LAD2 rats which have been sequenced were reciprocally crossed to generate 10 litters of F1 progeny. For 5 of these litters, the sire was HAD2; and, for the other 5 litters, the sire was a LAD2. From these 10 litters, two males and two females were picked from each F1 litter (N = 40 total). The F1‐pups were divided, with balancing for sex and direction of cross, into an alcohol (15%) vs a water control group. Alcohol‐drinking started in the middle of adolescence (~PND 35) and lasted 9 weeks. At the end of these treatments, rats were euthanized, the nucleus accumbens was dissected, and RNA was processed for RNA‐sequencing and ASE analyses. Results Analyses revealed that adolescent ethanol drinking, individual ethanol drinking levels, parentage, and sex‐of‐animal affected ASEs of about 300 genes. The identified genes included those associated with ethanol metabolism (e.g., Aldh2); neuromodulatory function [e.g., Cckbr, Slc6a7, and Slc1a1]; ion channel activity (e.g., Kcnc3); as well as other synaptic and epigenetic function. Conclusion These data indicate that ethanol drinking differentially amplified paternal vs maternal allelic contribution to the transcriptome. We hypothesize that this was due, at least in part, to ethanol‐induced changes in cis‐regulation of polymorphisms previously identified between the HAD2 and LAD2 rat lines. This report highlights the complexity of gene‐by‐environment interactions mediating a genetic predisposition for, and/or the active development of, alcohol use disorders
    corecore