317 research outputs found

    Multiple dynamical time-scales in networks with hierarchically nested modular organization

    Full text link
    Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters defined at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intra-modular and slow inter-modular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales.Comment: 10 pages, 4 figure

    Experimental realization of a topological Anderson insulator

    Get PDF
    We experimentally demonstrate that disorder can induce a topologically non-trivial phase. We implement this “Topological Anderson Insulator” in arrays of evanescently coupled waveguides and demonstrate its unique features

    Synchronization, Diversity, and Topology of Networks of Integrate and Fire Oscillators

    Get PDF
    We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention in the interplay between networks topological disorder and its synchronization features. Firstly, we analyze synchronization time TT in random networks, and find a scaling law which relates TT to networks connectivity. Then, we carry on comparing synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than any other disordered network. The fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to have a non-random topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.Comment: 6 pages, 8 figures, LaTeX 209, uses RevTe

    Topological Photonics

    Get PDF
    Topology is revolutionizing photonics, bringing with it new theoretical discoveries and a wealth of potential applications. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation even in the presence of impurities. Similarly, new optical mirrors of different wave-vector space topologies have been constructed to support new states of light propagating at their interfaces. These novel waveguides allow light to flow around large imperfections without back-reflection. The present review explains the underlying principles and highlights the major findings in photonic crystals, coupled resonators, metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1 tabl

    Phase Retrieval of Vortices in Bose-Einstein Condensates

    Full text link
    We propose and demonstrate numerically a measurement scheme for complete reconstruction of the quantum wavefunctions of Bose-Einstein condensates, amplitude and phase, from a time of flight measurement. We identify a fundamental ambiguity present in the measurement of vortices and show how to overcome it by augmenting the measurement to allow reconstruction of matter-wave vortices and arrays of vortices

    Topological Protection of Photonic Path Entanglement

    Full text link
    The recent advent of photonic topological insulators has opened the door to using the robustness of topologically protected transport (originated in the domain of condensed matter physics) in optical devices and in quantum simulation. Concurrently, quantum walks in photonic networks have been shown to yield exponential speedup for certain algorithms, such as Boson sampling. Here we theoretically demonstrate that photonic topological insulators can robustly protect the transport of quantum information through photonic networks, despite the presence of disorder

    Probing topological invariants in the bulk of a non-Hermitian optical system

    Full text link
    Topological insulators are insulating in the bulk but feature conducting states on their surfaces. Standard methods for probing their topological properties largely involve probing the surface, even though topological invariants are defined via the bulk band structure. Here, we utilize non-hermiticy to experimentally demonstrate a topological transition in an optical system, using bulk behavior only, without recourse to surface properties. This concept is relevant for a wide range of systems beyond optics, where the surface physics is difficult to probe

    Norms of Public Argumentation and the Ideals of Correctness and Participation

    Get PDF
    UIDB/00183/2020 UIDP/00183/2020Argumentation as the public exchange of reasons is widely thought to enhance deliberative interactions that generate and justify reasonable public policies. Adopting an argumentation-theoretic perspective, we survey the norms that should govern public argumentation and address some of the complexities that scholarly treatments have identified. Our focus is on norms associated with the ideals of correctness and participation as sources of a politically legitimate deliberative outcome. In principle, both ideals are mutually coherent. If the information needed for a correct deliberative outcome is distributed among agents, then maximising participation increases information diversity. But both ideals can also be in tension. If participants lack competence or are prone to biases, a correct deliberative outcome requires limiting participation. The central question for public argumentation, therefore, is how to strike a balance between both ideals. Rather than advocating a preferred normative framework, our main purpose is to illustrate the complexity of this theme.publishersversionepub_ahead_of_prin
    corecore