1,596 research outputs found
A theory for molecular transport phenomena through thin membranes
Theory for molecular transport phenomena through thin membrane
Simulation of the Spin Field Effect Transistors: Effects of Tunneling and Spin Relaxation on its Performance
A numerical simulation of spin-dependent quantum transport for a spin field
effect transistor (spinFET) is implemented in a widely used simulator nanoMOS.
This method includes the effect of both spin relaxation in the channel and the
tunneling barrier between the source/drain and the channel. Account for these
factors permits setting more realistic performance limits for the transistor,
especially the magnetoresistance, which is found to be lower compared to
earlier predictions. The interplay between tunneling and spin relaxation is
elucidated by numerical simulation. Insertion of the tunneling barrier leads to
an increased magnetoresistance. Numerical simulations are used to explore the
tunneling barrier design issues.Comment: 31 pages, 14 figures, submitted to Journal of Applied Physic
A Simple Boltzmann Transport Equation for Ballistic to Diffusive Transient Heat Transport
Developing simplified, but accurate, theoretical approaches to treat heat
transport on all length and time scales is needed to further enable scientific
insight and technology innovation. Using a simplified form of the Boltzmann
transport equation (BTE), originally developed for electron transport, we
demonstrate how ballistic phonon effects and finite-velocity propagation are
easily and naturally captured. We show how this approach compares well to the
phonon BTE, and readily handles a full phonon dispersion and energy-dependent
mean-free-path. This study of transient heat transport shows i) how fundamental
temperature jumps at the contacts depend simply on the ballistic thermal
resistance, ii) that phonon transport at early times approach the ballistic
limit in samples of any length, and iii) perceived reductions in heat
conduction, when ballistic effects are present, originate from reductions in
temperature gradient. Importantly, this framework can be recast exactly as the
Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing
ballistic heat effects is to use the correct physical boundary conditions.Comment: 9 pages, 5 figure
Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors
Electronic transport in a carbon nanotube (CNT) metal-oxide-semiconductor
field effect transistor (MOSFET) is simulated using the non-equilibrium Green's
functions method with the account of electron-phonon scattering. For MOSFETs,
ambipolar conduction is explained via phonon-assisted band-to-band
(Landau-Zener) tunneling. In comparison to the ballistic case, we show that the
phonon scattering shifts the onset of ambipolar conduction to more positive
gate voltage (thereby increasing the off current). It is found that the
subthreshold swing in ambipolar conduction can be made as steep as 40mV/decade
despite the effect of phonon scattering.Comment: 13 pages, 4 figure
Ballisticity of nanotube FETs: Role of phonon energy and gate bias
We investigate the role of electron-phonon scattering and gate bias in
degrading the drive current of nanotube MOSFETs. Our central results are: (i)
Optical phonon scattering significantly decreases the drive current only when
gate voltage is higher than a well-defined threshold. It means that elastic
scattering mechanisms are most detrimental to nanotube MOSFETs. (ii) For
comparable mean free paths, a lower phonon energy leads to a larger degradation
of drive current. Thus for semiconducting nanowire FETs, the drive current will
be more sensitive than carbon nanotube FETs because of the smaller phonon
energies in semiconductors. (iii) Radial breathing mode phonons cause an
appreciable reduction in drive current.Comment: 16 pages, 1 table, 4 figure
Array processor architecture connection network
A connection network is disclosed for use between a parallel array of processors and a parallel array of memory modules for establishing non-conflicting data communications paths between requested memory modules and requesting processors. The connection network includes a plurality of switching elements interposed between the processor array and the memory modules array in an Omega networking architecture. Each switching element includes a first and a second processor side port, a first and a second memory module side port, and control logic circuitry for providing data connections between the first and second processor ports and the first and second memory module ports. The control logic circuitry includes strobe logic for examining data arriving at the first and the second processor ports to indicate when the data arriving is requesting data from a requesting processor to a requested memory module. Further, connection circuitry is associated with the strobe logic for examining requesting data arriving at the first and the second processor ports for providing a data connection therefrom to the first and the second memory module ports in response thereto when the data connection so provided does not conflict with a pre-established data connection currently in use
Enhancement of thermoelectric properties by energy filtering: Theoretical potential and experimental reality in nanostructured ZnSb
Energy filtering has been suggested by many authors as a means to improve
thermoelectric properties. The idea is to filter away low-energy charge
carriers in order to increase Seebeck coefficient without compromising
electronic conductivity. This concept was investigated in the present paper for
a specific material (ZnSb) by a combination of first-principles atomic-scale
calculations, Boltzmann transport theory, and experimental studies of the same
system. The potential of filtering in this material was first quantified, and
it was as an example found that the power factor could be enhanced by an order
of magnitude when the filter barrier height was 0.5~eV. Measured values of the
Hall carrier concentration in bulk ZnSb were then used to calibrate the
transport calculations, and nanostructured ZnSb with average grain size around
70~nm was processed to achieve filtering as suggested previously in the
literature. Various scattering mechanisms were employed in the transport
calculations and compared with the measured transport properties in
nanostructured ZnSb as a function of temperature. Reasonable correspondence
between theory and experiment could be achieved when a combination of constant
lifetime scattering and energy filtering with a 0.25~eV barrier was employed.
However, the difference between bulk and nanostructured samples was not
sufficient to justify the introduction of an energy filtering mechanism. The
reasons for this and possibilities to achieve filtering were discussed in the
paper
- …
