909 research outputs found
Oxygen in the Galactic thin and thick disks
First results from a study into the abundance trends of oxygen in the
Galactic thin and thick disks are presented. Oxygen abundances for 21 thick
disk and 42 thin disk F and G dwarf stars based on very high resolution spectra
(R\sim 215000) and high signal-to-noise (S/N>400) of the faint forbidden oxygen
line at 6300 A have been determined. We find that [O/Fe] for the thick disk
stars show a turn-down, i.e. the ``knee'', at [Fe/H] between -0.4 and -0.3 dex
indicating the onset of SNe type Ia. The thin disk stars on the other hand show
a shallow decrease going from [Fe/H] \sim -0.7 to the highest metallicities
with no apparent ``knee'' present indicating a slower star formation history.Comment: To be published in "CNO in the Universe", ASP Conference Series, C.
Charbonnel, D. Schaerer & G. Meynet (eds.
Interaction-induced chaos in a two-electron quantum-dot system
A quasi-one-dimensional quantum dot containing two interacting electrons is
analyzed in search of signatures of chaos. The two-electron energy spectrum is
obtained by diagonalization of the Hamiltonian including the exact Coulomb
interaction. We find that the level-spacing fluctuations follow closely a
Wigner-Dyson distribution, which indicates the emergence of quantum signatures
of chaos due to the Coulomb interaction in an otherwise non-chaotic system. In
general, the Poincar\'e maps of a classical analog of this quantum mechanical
problem can exhibit a mixed classical dynamics. However, for the range of
energies involved in the present system, the dynamics is strongly chaotic,
aside from small regular regions. The system we study models a realistic
semiconductor nanostructure, with electronic parameters typical of gallium
arsenide.Comment: 4 pages, 3ps figure
Decoherence due to contacts in ballistic nanostructures
The active region of a ballistic nanostructure is an open quantum-mechanical
system, whose nonunitary evolution (decoherence) towards a nonequilibrium
steady state is determined by carrier injection from the contacts. The purpose
of this paper is to provide a simple theoretical description of the
contact-induced decoherence in ballistic nanostructures, which is established
within the framework of the open systems theory. The active region's evolution
in the presence of contacts is generally non-Markovian. However, if the
contacts' energy relaxation due to electron-electron scattering is sufficiently
fast, then the contacts can be considered memoryless on timescales coarsened
over their energy relaxation time, and the evolution of the current-limiting
active region can be considered Markovian. Therefore, we first derive a general
Markovian map in the presence of a memoryless environment, by coarse-graining
the exact short-time non-Markovian dynamics of an abstract open system over the
environment memory-loss time, and we give the requirements for the validity of
this map. We then introduce a model contact-active region interaction that
describes carrier injection from the contacts for a generic two-terminal
ballistic nanostructure. Starting from this model interaction and using the
Markovian dynamics derived by coarse-graining over the effective memory-loss
time of the contacts, we derive the formulas for the nonequilibrium
steady-state distribution functions of the forward and backward propagating
states in the nanostructure's active region. On the example of a double-barrier
tunneling structure, the present approach yields an I-V curve with all the
prominent resonant features. The relationship to the Landauer-B\"{u}ttiker
formalism is also discussed, as well as the inclusion of scattering.Comment: Published versio
Temperature dependence of D'yakonov-Perel' spin relaxation in zinc blende semiconductor quantum structures
The D'yakonov-Perel' mechanism, intimately related to the spin splitting of
the electronic states, usually dominates the spin relaxation in zinc blende
semiconductor quantum structures. Previously it has been formulated for the two
limiting cases of low and high temperatures. Here we extend the theory to give
an accurate description of the intermediate regime which is often relevant for
room temperature experiments. Employing the self-consistent multiband envelope
function approach, we determine the spin splitting of electron subbands in
n-(001) zinc blende semiconductor quantum structures. Using these results we
calculate spin relaxation rates as a function of temperature and obtain
excellent agreement with experimental data.Comment: 9 pages, 4 figure
Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b
[Context] The first detection of an atmosphere around an extrasolar planet
was presented by Charbonneau and collaborators in 2002. In the optical
transmission spectrum of the transiting exoplanet HD209458b, an absorption
signal from sodium was measured at a level of 0.023+-0.006%, using the STIS
spectrograph on the Hubble Space Telescope. Despite several attempts, so far
only upper limits to the Na D absorption have been obtained using telescopes
from the ground, and the HST result has yet to be confirmed.
[Aims] The aims of this paper are to re-analyse data taken with the High
Dispersion Spectrograph on the Subaru telescope, to correct for systematic
effects dominating the data quality, and to improve on previous results
presented in the literature.
[Methods] The data reduction process was altered in several places, most
importantly allowing for small shifts in the wavelength solution. The relative
depth of all lines in the spectra, including the two sodium D lines, are found
to correlate strongly with the continuum count level in the spectra. These
variations are attributed to non-linearity effects in the CCDs. After removal
of this empirical relation the uncertainties in the line depths are only a
fraction above that expected from photon statistics.
[Results] The sodium absorption due to the planet's atmosphere is detected at
>5 sigma, at a level of 0.056+-0.007% (2x3.0 Ang band), 0.070+-0.011% (2x1.5
Ang band), and 0.135+-0.017% (2x0.75 Ang band). There is no evidence that the
planetary absorption signal is shifted with respect to the stellar absorption,
as recently claimed for HD189733b. The measurements in the two most narrow
bands indicate that some signal is being resolved.[abridged]Comment: Latex, 7 pages: accepted for publication in Astronomy & Astrophysic
Thermoelectric properties of the bismuth telluride nanowires in the constant-relaxation-time approximation
Electronic structure of bismuth telluride nanowires with the growth
directions [110] and [015] is studied in the framework of anisotropic effective
mass method using the parabolic band approximation. The components of the
electron and hole effective mass tensor for six valleys are calculated for both
growth directions. For a square nanowire, in the temperature range from 77 K to
500 K, the dependence of the Seebeck coefficient, the electron thermal and
electrical conductivity as well as the figure of merit ZT on the nanowire
thickness and on the excess hole concentration are investigated in the
constant-relaxation-time approximation. The carrier confinement is shown to
play essential role for square nanowires with thickness less than 30 nm. The
confinement decreases both the carrier concentration and the thermal
conductivity but increases the maximum value of Seebeck coefficient in contrast
to the excess holes (impurities). The confinement effect is stronger for the
direction [015] than for the direction [110] due to the carrier mass difference
for these directions. The carrier confinement increases maximum value of ZT and
shifts it towards high temperatures. For the p-type bismuth telluride nanowires
with growth direction [110], the maximum value of the figure of merit is equal
to 1.3, 1.6, and 2.8, correspondingly, at temperatures 310 K, 390 K, 480 K and
the nanowire thicknesses 30 nm, 15 nm, and 7 nm. At the room temperature, the
figure of merit equals 1.2, 1.3, and 1.7, respectively.Comment: 13 pages, 7 figures, 2 tables, typos added, added references for
sections 2-
Universality in Systems with Power-Law Memory and Fractional Dynamics
There are a few different ways to extend regular nonlinear dynamical systems
by introducing power-law memory or considering fractional
differential/difference equations instead of integer ones. This extension
allows the introduction of families of nonlinear dynamical systems converging
to regular systems in the case of an integer power-law memory or an integer
order of derivatives/differences. The examples considered in this review
include the logistic family of maps (converging in the case of the first order
difference to the regular logistic map), the universal family of maps, and the
standard family of maps (the latter two converging, in the case of the second
difference, to the regular universal and standard maps). Correspondingly, the
phenomenon of transition to chaos through a period doubling cascade of
bifurcations in regular nonlinear systems, known as "universality", can be
extended to fractional maps, which are maps with power-/asymptotically
power-law memory. The new features of universality, including cascades of
bifurcations on single trajectories, which appear in fractional (with memory)
nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201
A dusty pinwheel nebula around the massive star WR 104
Wolf-Rayet (WR) stars are luminous massive blue stars thought to be immediate
precursors to the supernova terminating their brief lives. The existence of
dust shells around such stars has been enigmatic since their discovery some 30
years ago; the intense radiation field from the star should be inimical to dust
survival. Although dust-creation models, including those involving interacting
stellar winds from a companion star, have been put forward, high-resolution
observations are required to understand this phenomena. Here we present
resolved images of the dust outflow around Wolf-Rayet WR 104, obtained with
novel imaging techniques, revealing detail on scales corresponding to about 40
AU at the star. Our maps show that the dust forms a spatially confined stream
following precisely a linear (or Archimedian) spiral trajectory. Images taken
at two separate epochs show a clear rotation with a period of 220 +/- 30 days.
Taken together, these findings prove that a binary star is responsible for the
creation of the circumstellar dust, while the spiral plume makes WR 104 the
prototype of a new class of circumstellar nebulae unique to interacting wind
systems.Comment: 7 pages, 2 figures, Appearing in Nature (1999 April 08
Silicon-based molecular electronics
Molecular electronics on silicon has distinct advantages over its metallic
counterpart. We describe a theoretical formalism for transport through
semiconductor-molecule heterostructures, combining a semi-empirical treatment
of the bulk silicon bandstructure with a first-principles description of the
molecular chemistry and its bonding with silicon. Using this method, we
demonstrate that the presence of a semiconducting band-edge can lead to a novel
molecular resonant tunneling diode (RTD) that shows negative differential
resistance (NDR) when the molecular levels are driven by an STM potential into
the semiconducting band-gap. The peaks appear for positive bias on a p-doped
and negative for an n-doped substrate. Charging in these devices is compromised
by the RTD action, allowing possible identification of several molecular
highest occupied (HOMO) and lowest unoccupied (LUMO) levels. Recent experiments
by Hersam et al. [1] support our theoretical predictions.Comment: Author list is reverse alphabetical. All authors contributed equally.
Email: rakshit/liangg/ ghosha/[email protected]
Scalar Multiplet Dark Matter
We perform a systematic study of the phenomenology associated to models where
the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet,
up to n=7. If one includes only the pure gauge induced annihilation
cross-sections it is known that such particles provide good dark matter
candidates, leading to the observed dark matter relic abundance for a
particular value of their mass around the TeV scale. We show that these values
actually become ranges of values -which we determine- if one takes into account
the annihilations induced by the various scalar couplings appearing in these
models. This leads to predictions for both direct and indirect detection
signatures as a function of the dark matter mass within these ranges. Both can
be largely enhanced by the quartic coupling contributions. We also explain how,
if one adds right-handed neutrinos to the scalar doublet case, the results of
this analysis allow to have altogether a viable dark matter candidate,
successful generation of neutrino masses, and leptogenesis in a particularly
minimal way with all new physics at the TeV scale.Comment: 43 pages, 20 figure
- …
