909 research outputs found

    Oxygen in the Galactic thin and thick disks

    Get PDF
    First results from a study into the abundance trends of oxygen in the Galactic thin and thick disks are presented. Oxygen abundances for 21 thick disk and 42 thin disk F and G dwarf stars based on very high resolution spectra (R\sim 215000) and high signal-to-noise (S/N>400) of the faint forbidden oxygen line at 6300 A have been determined. We find that [O/Fe] for the thick disk stars show a turn-down, i.e. the ``knee'', at [Fe/H] between -0.4 and -0.3 dex indicating the onset of SNe type Ia. The thin disk stars on the other hand show a shallow decrease going from [Fe/H] \sim -0.7 to the highest metallicities with no apparent ``knee'' present indicating a slower star formation history.Comment: To be published in "CNO in the Universe", ASP Conference Series, C. Charbonnel, D. Schaerer & G. Meynet (eds.

    Interaction-induced chaos in a two-electron quantum-dot system

    Full text link
    A quasi-one-dimensional quantum dot containing two interacting electrons is analyzed in search of signatures of chaos. The two-electron energy spectrum is obtained by diagonalization of the Hamiltonian including the exact Coulomb interaction. We find that the level-spacing fluctuations follow closely a Wigner-Dyson distribution, which indicates the emergence of quantum signatures of chaos due to the Coulomb interaction in an otherwise non-chaotic system. In general, the Poincar\'e maps of a classical analog of this quantum mechanical problem can exhibit a mixed classical dynamics. However, for the range of energies involved in the present system, the dynamics is strongly chaotic, aside from small regular regions. The system we study models a realistic semiconductor nanostructure, with electronic parameters typical of gallium arsenide.Comment: 4 pages, 3ps figure

    Decoherence due to contacts in ballistic nanostructures

    Full text link
    The active region of a ballistic nanostructure is an open quantum-mechanical system, whose nonunitary evolution (decoherence) towards a nonequilibrium steady state is determined by carrier injection from the contacts. The purpose of this paper is to provide a simple theoretical description of the contact-induced decoherence in ballistic nanostructures, which is established within the framework of the open systems theory. The active region's evolution in the presence of contacts is generally non-Markovian. However, if the contacts' energy relaxation due to electron-electron scattering is sufficiently fast, then the contacts can be considered memoryless on timescales coarsened over their energy relaxation time, and the evolution of the current-limiting active region can be considered Markovian. Therefore, we first derive a general Markovian map in the presence of a memoryless environment, by coarse-graining the exact short-time non-Markovian dynamics of an abstract open system over the environment memory-loss time, and we give the requirements for the validity of this map. We then introduce a model contact-active region interaction that describes carrier injection from the contacts for a generic two-terminal ballistic nanostructure. Starting from this model interaction and using the Markovian dynamics derived by coarse-graining over the effective memory-loss time of the contacts, we derive the formulas for the nonequilibrium steady-state distribution functions of the forward and backward propagating states in the nanostructure's active region. On the example of a double-barrier tunneling structure, the present approach yields an I-V curve with all the prominent resonant features. The relationship to the Landauer-B\"{u}ttiker formalism is also discussed, as well as the inclusion of scattering.Comment: Published versio

    Temperature dependence of D'yakonov-Perel' spin relaxation in zinc blende semiconductor quantum structures

    Full text link
    The D'yakonov-Perel' mechanism, intimately related to the spin splitting of the electronic states, usually dominates the spin relaxation in zinc blende semiconductor quantum structures. Previously it has been formulated for the two limiting cases of low and high temperatures. Here we extend the theory to give an accurate description of the intermediate regime which is often relevant for room temperature experiments. Employing the self-consistent multiband envelope function approach, we determine the spin splitting of electron subbands in n-(001) zinc blende semiconductor quantum structures. Using these results we calculate spin relaxation rates as a function of temperature and obtain excellent agreement with experimental data.Comment: 9 pages, 4 figure

    Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b

    Full text link
    [Context] The first detection of an atmosphere around an extrasolar planet was presented by Charbonneau and collaborators in 2002. In the optical transmission spectrum of the transiting exoplanet HD209458b, an absorption signal from sodium was measured at a level of 0.023+-0.006%, using the STIS spectrograph on the Hubble Space Telescope. Despite several attempts, so far only upper limits to the Na D absorption have been obtained using telescopes from the ground, and the HST result has yet to be confirmed. [Aims] The aims of this paper are to re-analyse data taken with the High Dispersion Spectrograph on the Subaru telescope, to correct for systematic effects dominating the data quality, and to improve on previous results presented in the literature. [Methods] The data reduction process was altered in several places, most importantly allowing for small shifts in the wavelength solution. The relative depth of all lines in the spectra, including the two sodium D lines, are found to correlate strongly with the continuum count level in the spectra. These variations are attributed to non-linearity effects in the CCDs. After removal of this empirical relation the uncertainties in the line depths are only a fraction above that expected from photon statistics. [Results] The sodium absorption due to the planet's atmosphere is detected at >5 sigma, at a level of 0.056+-0.007% (2x3.0 Ang band), 0.070+-0.011% (2x1.5 Ang band), and 0.135+-0.017% (2x0.75 Ang band). There is no evidence that the planetary absorption signal is shifted with respect to the stellar absorption, as recently claimed for HD189733b. The measurements in the two most narrow bands indicate that some signal is being resolved.[abridged]Comment: Latex, 7 pages: accepted for publication in Astronomy & Astrophysic

    Thermoelectric properties of the bismuth telluride nanowires in the constant-relaxation-time approximation

    Full text link
    Electronic structure of bismuth telluride nanowires with the growth directions [110] and [015] is studied in the framework of anisotropic effective mass method using the parabolic band approximation. The components of the electron and hole effective mass tensor for six valleys are calculated for both growth directions. For a square nanowire, in the temperature range from 77 K to 500 K, the dependence of the Seebeck coefficient, the electron thermal and electrical conductivity as well as the figure of merit ZT on the nanowire thickness and on the excess hole concentration are investigated in the constant-relaxation-time approximation. The carrier confinement is shown to play essential role for square nanowires with thickness less than 30 nm. The confinement decreases both the carrier concentration and the thermal conductivity but increases the maximum value of Seebeck coefficient in contrast to the excess holes (impurities). The confinement effect is stronger for the direction [015] than for the direction [110] due to the carrier mass difference for these directions. The carrier confinement increases maximum value of ZT and shifts it towards high temperatures. For the p-type bismuth telluride nanowires with growth direction [110], the maximum value of the figure of merit is equal to 1.3, 1.6, and 2.8, correspondingly, at temperatures 310 K, 390 K, 480 K and the nanowire thicknesses 30 nm, 15 nm, and 7 nm. At the room temperature, the figure of merit equals 1.2, 1.3, and 1.7, respectively.Comment: 13 pages, 7 figures, 2 tables, typos added, added references for sections 2-

    Universality in Systems with Power-Law Memory and Fractional Dynamics

    Full text link
    There are a few different ways to extend regular nonlinear dynamical systems by introducing power-law memory or considering fractional differential/difference equations instead of integer ones. This extension allows the introduction of families of nonlinear dynamical systems converging to regular systems in the case of an integer power-law memory or an integer order of derivatives/differences. The examples considered in this review include the logistic family of maps (converging in the case of the first order difference to the regular logistic map), the universal family of maps, and the standard family of maps (the latter two converging, in the case of the second difference, to the regular universal and standard maps). Correspondingly, the phenomenon of transition to chaos through a period doubling cascade of bifurcations in regular nonlinear systems, known as "universality", can be extended to fractional maps, which are maps with power-/asymptotically power-law memory. The new features of universality, including cascades of bifurcations on single trajectories, which appear in fractional (with memory) nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201

    A dusty pinwheel nebula around the massive star WR 104

    Get PDF
    Wolf-Rayet (WR) stars are luminous massive blue stars thought to be immediate precursors to the supernova terminating their brief lives. The existence of dust shells around such stars has been enigmatic since their discovery some 30 years ago; the intense radiation field from the star should be inimical to dust survival. Although dust-creation models, including those involving interacting stellar winds from a companion star, have been put forward, high-resolution observations are required to understand this phenomena. Here we present resolved images of the dust outflow around Wolf-Rayet WR 104, obtained with novel imaging techniques, revealing detail on scales corresponding to about 40 AU at the star. Our maps show that the dust forms a spatially confined stream following precisely a linear (or Archimedian) spiral trajectory. Images taken at two separate epochs show a clear rotation with a period of 220 +/- 30 days. Taken together, these findings prove that a binary star is responsible for the creation of the circumstellar dust, while the spiral plume makes WR 104 the prototype of a new class of circumstellar nebulae unique to interacting wind systems.Comment: 7 pages, 2 figures, Appearing in Nature (1999 April 08

    Silicon-based molecular electronics

    Full text link
    Molecular electronics on silicon has distinct advantages over its metallic counterpart. We describe a theoretical formalism for transport through semiconductor-molecule heterostructures, combining a semi-empirical treatment of the bulk silicon bandstructure with a first-principles description of the molecular chemistry and its bonding with silicon. Using this method, we demonstrate that the presence of a semiconducting band-edge can lead to a novel molecular resonant tunneling diode (RTD) that shows negative differential resistance (NDR) when the molecular levels are driven by an STM potential into the semiconducting band-gap. The peaks appear for positive bias on a p-doped and negative for an n-doped substrate. Charging in these devices is compromised by the RTD action, allowing possible identification of several molecular highest occupied (HOMO) and lowest unoccupied (LUMO) levels. Recent experiments by Hersam et al. [1] support our theoretical predictions.Comment: Author list is reverse alphabetical. All authors contributed equally. Email: rakshit/liangg/ ghosha/[email protected]

    Scalar Multiplet Dark Matter

    Full text link
    We perform a systematic study of the phenomenology associated to models where the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet, up to n=7. If one includes only the pure gauge induced annihilation cross-sections it is known that such particles provide good dark matter candidates, leading to the observed dark matter relic abundance for a particular value of their mass around the TeV scale. We show that these values actually become ranges of values -which we determine- if one takes into account the annihilations induced by the various scalar couplings appearing in these models. This leads to predictions for both direct and indirect detection signatures as a function of the dark matter mass within these ranges. Both can be largely enhanced by the quartic coupling contributions. We also explain how, if one adds right-handed neutrinos to the scalar doublet case, the results of this analysis allow to have altogether a viable dark matter candidate, successful generation of neutrino masses, and leptogenesis in a particularly minimal way with all new physics at the TeV scale.Comment: 43 pages, 20 figure
    corecore